Negative Binomial Regression Analysis of Factors Influencing Stunting Cases in Central Lombok Regency

Elma Yulia Putri Ananda, Suwardi Annas, Hisyam Ihsan, Aswi Aswi

Abstract


Poisson regression is commonly used to model count data, relying on the crucial assumption of equidispersion, where the mean and variance are equal. However, this assumption is often violated in real-world data, which can exhibit overdispersion or underdispersion. When this occurs, the standard Poisson model becomes unsuitable, leading to biased and inaccurate parameter estimates. To address overdispersion in count data, Negative Binomial Regression (NBR) is a viable alternative, as it incorporates an additional parameter to account for variability greater than the mean. Stunting, a condition characterized by significantly impaired growth in infants, has been a primary concern for the Indonesian government during the 2019-2024 period, particularly in Central Lombok district. Reducing stunting rates is critical to ensuring an optimal quality of life for future generations. Despite extensive research on stunting, the application of NBR to analyze factors influencing stunting cases in Central Lombok Regency has not yet been explored. This study aims to implement the NBR model to identify the determinants of stunting in Central Lombok. Data were collected from 29 community health centers (PUSKESMAS) in Central Lombok. The findings indicate that an increase in the number of malnourished toddlers is associated with a corresponding rise in stunting cases. Similarly, a higher prevalence of low-birth-weight infants is linked to an elevated incidence of stunting.

Keywords


Poisson Regression; Negative Binomial Regression; Overdispersion; Stunting; Central Lombok Regency

Full Text:

PDF

References


A. Khairunnisa, Ihsan, and M. Patandianan, “Risk Burden of Heat-Related Morbility Due to Urban Heat Island Effect in Tamalanrea District, Makassar,” J. Masy. Kesehat., vol. 19, no. 4, pp. 149–158, 2023, doi: 10.30597/mkmi.v19i4.26691.

A. Aswi, S. A. Astuti, and S. Sudarmin, “Evaluating the Performance of Zero-Inflated and Hurdle Poisson Models for Modeling Overdispersion in Count Data,” Inferensi, vol. 5, no. 1, p. 17, 2022, doi: 10.12962/j27213862.v5i1.12422.

A. Rahayu, “Model-model Regresi untuk Mengatasi Masalah Overdispersi pada Regresi Poisson,” J. peqguruan Conf. Ser., vol. 1, no. April, pp. 1–5, 2020, doi: http://dx.doi.org/10.35329/jp.v2i1.1866.

Y. A. Ulfa, A. M. Soleh, and B. Sartono, “Handling of Overdispersion in the Poisson Regression Model with Negative Binomial for the Number of New Cases of Leprosy in Java,” Indones. J. Stat. Its Appl., vol. 5, no. 1, pp. 1–13, 2021, doi: 10.29244/ijsa.v5i1p1-13.

N. H. Fitrial and A. Fatikhurrizqi, “Pemodelan Jumlah Kasus Covid-19 Di Indonesia Dengan Pendekatan Regresi Poisson Dan Regresi Binomial Negatif,” Semin. Nas. Off. Stat., vol. 2020, no. 1, pp. 65–72, 2021, doi: 10.34123/semnasoffstat.v2020i1.465.

P. C. Ambarwati, I. Indahwati, and M. N. Aidi, “Kajian Simulasi Overdispersi Pada Regresi Poisson Dan Binomial Negatif Terboboti Geografis Untuk Data Balita Gizi Buruk,” Indones. J. Stat. Its Appl., vol. 4, no. 3, pp. 484–497, 2020, doi: 10.29244/ijsa.v4i3.684.

H. M. Winata, “Mengatasi Overdispersi dengan Regresi Binomial Negatif pada Angka Kematian Ibu di Kota Bandung,” J. Gaussian, vol. 11, no. 4, pp. 616–622, 2023, doi: 10.14710/j.gauss.11.4.616-622.

A. Sauddin, N. I. Auliah, and W. Alwi, “Pemodelan Jumlah Kematian Ibu di Provinsi Sulawesi Selatan Menggunakan Regresi Binomial Negatif,” J. MSA ( Mat. dan Stat. serta Apl. ), vol. 8, no. 2, p. 42, 2020, doi: 10.24252/msa.v8i2.17409.

A. Aswi, S. Sukarna, and N. Nurhilaliyah, “Pemetaan Risiko Relatif Kasus Stunting di Provinsi Sulawesi Selatan,” Sainsmat J. Ilm. Ilmu Pengetah. Alam, vol. 11, no. 1, p. 11, 2022, doi: 10.35580/sainsmat111325202022.

A. A. Azis and A. Aswi, “Spatial Clustering of Stunting Cases in Indonesia: a Bayesian Approach,” Commun. Math. Biol. Neurosci., vol. 2023, pp. 1–11, 2023, doi: 10.28919/cmbn/7898.

A. Aswi, B. Poerwanto, Sudarmin, and Nurwan, Bayesian Spatial Modelling of Stunting Cases in South Sulawesi Province: Influential Factors and Relative Risk, vol. 2023, no. Icsmtr. Atlantis Press International BV, 2023. doi: 10.2991/978-94-6463-332-0_11.

A. Aswi and S. Sukarna, “Pemodelan Spasial Bayesian dalam Menentukan Faktor yang Mempengaruhi Kejadian Stunting di Provinsi Sulawesi Selatan,” J. Math. Comput. Stat., vol. 5, no. 1, pp. 1–11, 2021.

U. Stunting, “Cegah Stunting, Wapres Minta Keluarga Indonesia Prioritaskan Kebutuhan Gizi Anak dan Sanitasi,” RI, Kementerian Sekretariat Negara Presiden, Sekretariat Wakil, 2023.

Rokom, “Prevalensi Stunting di Indonesia Turun ke 21,6% dari 24,4%,” Sehat Negriku, 2023.

L. E. Afri, Aunuddin, and A. Djuraidah, “Model regresi binomial negatif terboboti geografis untuk data kematian bayi,” Forum Stat. dan Komputasi Indones. J. Stat., vol. 17, no. 2, pp. 33–39, 2012.

D. K. Wardani and A. Wulandari, “Pemodelan Negative Binomial Regression Pada Data Jumlah Kematian Bayi Di Kabupaten Jombang,” Transform. J. Pendidik. Mat. dan Mat., vol. 4, no. 2, pp. 311–320, 2020, doi: 10.36526/tr.v4i2.968.

L. I. Oztig and O. E. Askin, “Human mobility and coronavirus disease 2019 (COVID-19): a negative binomial regression analysis,” Public Health, vol. 185, pp. 364–367, 2020, doi: 10.1016/j.puhe.2020.07.002.

M. Fathurahman, “Regresi Binomial Negatif untuk Memodelkan Kematian Bayi di Kalimantan Timur,” Eksponensial, vol. 13, pp. 79–86, 2022.

T. W. Utami, “Analisis regresi binomial negatif untuk mengatasi overdispersion regresi poisson pada kasus demam berdarah dengue,” J. Stat. Univ. Muhammadiyah Semarang, vol. 1, no. 2, pp. 0–6, 2013.

F. Fitri, F. M. Sari, N. F. Gamayanti, and I. T. Utami, “Infant Mortality Case: An Application of Negative Binomial Regression in order to Overcome Overdispersion in Poisson Regression,” Eksata Berk. Ilm. Bid. MIPA, vol. 22, no. 03, pp. 200–210, 2021, doi: https://doi.org/10.24036//eksakta/vol22-iss2/272 Eksakta BerkalaiIlmiah Bidang MIPA http://www.eksakta.ppj.unp.ac.id/index.php/eksakta Article.

R. A. Salenussa, M. S. N. Van Delsen, and G. Haumahu, “Modelling Negative Binomial Regression To Resolve Overdisperssion( Case Studi : The Number of Families at Risk of Stunting in Maluku Province in 2021 ),” vol. 4, no. 2, 2023.

F. Zubedi, M. A. Aliu, Y. Rahim, and F. A. Oroh, “Analisis Faktor-Faktor Yang Mempengaruhi Stunting Pada Balita Di Kota Gorontalo Menggunakan Regresi Binomial Negatif,” Jambura J. Probab. Stat., vol. 2, no. 1, pp. 48–55, 2021, doi: 10.34312/jjps.v2i1.10284.

F. Cholid, D. Trishnanti, and H. Al Azies, “Pemetaan Faktor-Faktor yang Mempengaruhi Stunting pada Balita dengan Geographically Weighted Regression ( GWR ) Mapping of The Factors Affecting Stunting on Toddlers with Geographically Weighted Regression ( GWR ),” SEMNAkes 2019 "Improving Qual. Heal. Tharough Adv. Res. HHelatH Sci., no. March 2020, pp. 156–165, 2019, doi: 10.17605/OSF.IO/9MZU7.

K. Widayati, I. kadek A. D. Putra, and N. L. M. A. Dewi, “Determinant Factor for Stunting in Toddler,” J. Aisyah J. Ilmu Kesehat., vol. 6, no. 1, pp. 9–16, 2021, doi: 10.30604/jika.v6i1.381.

Menteri Kesehatan Republik Indoesia, “Peraturan Menteri Kesehatan Repunlik Indonesia Nomor 2 Tahun 2020,” vol. 21, no. 1, pp. 1–9, 2020.

H. SUYUTI, “Peraturan Menteri Kesehatan Republik Indonesia Nomor 29 Tahun 2019,” pp. 5–10, 2019.

Menteri Kesehatan Republik Indonesia, “Peraturan Menteri Kesehatan Republik Indonesia Nomor 12 Tahun 2017,” pp. 2–4, 2017.

B. LINGGA and P. K. RIAU, “Persalinan Melalui Tenaga Kesehatan dan Fasilitas Kesehatan,” pp. 1–29, 2022.

M. Rivki, A. M. Bachtiar, T. Informatika, F. Teknik, and U. K. Indonesia, Pendek (Stunting) di Indonesia, Masalah dan Solusinya, no. 112. 2015.

C. Segovia, “Inisiasi Menyusu Dini dan Air Susu Ibu Ekslusif,” Tesis Dr., vol. 2014, no. June, pp. 1–2, 2014.

I. P. Sari, Y. Ardillah, and A. Rahmiwati, “Berat bayi lahir dan kejadian stunting pada anak usia 6-59 bulan di Kecamatan Seberang Ulu I Palembang,” J. Gizi Indones. (The Indones. J. Nutr., vol. 8, no. 2, pp. 110–118, 2020, doi: 10.14710/jgi.8.2.110-118.

M. Ihwal, “Arus Jurnal Sains dan Teknologi ( AJST ) Analisis Faktor-faktor yang Mempengaruhi Banyaknya Kasus Stunting,” vol. 2, no. 1, 2024.

A. Adityaningrum et al., “Faktor Penyebab Stunting Di Indonesia: Analisis Data Sekunder Data Ssgi Tahun 2021 Factors Causing Stunting in Indonesia: 2021 Ssgi Secondary Data Analysis,” Jambura J. Epidemiol., vol. 3, no. 1, pp. 1–10, 2021.




DOI: http://dx.doi.org/10.12962/j27213862.v7i3.21436

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats