The Application of the K-Medoid Classification Method for Analyzing Crime Rates in South Sulawesi

Suwardi Annas, Aswi Aswi, Irwan Irwan

Abstract


This research employs the k-medoid clustering method to analyze districts and cities in South Sulawesi based on their crime rates. As the population grows, employment opportunities tend to diminish, which can increase stress levels and, consequently, the likelihood of criminal behavior. To evaluate the distribution of criminal incidents across South Sulawesi, the k-medoid method is used to cluster regions. Unlike other clustering methods, k-medoid utilizes the median as the cluster center (medoid), which enhances its robustness against outliers. Specifically, the Partitioning Around Medoids (PAM) algorithm is applied, where initial objects are randomly selected to represent clusters. If the error value is high, the cluster centers are adjusted until the error is minimized. The dataset comprises crime incidence data for South Sulawesi in 2020, focusing on various types of crime. The analysis identified an optimal number of three clusters based on the Silhouette coefficient. Cluster 1 includes 11 regions, Cluster 2 consists of 8 regions, and Cluster 3 contains 5 regions. These clusters provide a comprehensive overview of the crime conditions across different regions within each cluster.


Keywords


Cluster; k-medoid; crime; South Sulawesi

Full Text:

PDF

References


J. F. Hair Jr, W. C. Black Barry J, and B. R. E. Anderson, Multivariate Data Analysis Seventh Edition. New Jersey (US): Pearson, 2010. doi: 10.4324/9781351269360.

R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis 6th edition.pdf. New Jersey: Prentice Hall, 2007.

J. Supranto, Analisis multivariat : Arti dan Interpretasi. Jakarta: Jakarta: Rineka Cipta, 2004.

L. Kaufman and P. J. Rousseeuw, Finding Group in Data. Kanada: John Willey & Sons, Inc, 1990.

J. Han, M. Kamber, and J. Pei, Data mining: Data mining concepts and techniques. Elsevier: Morgan Kaufmann publications, 2006. doi: 10.1109/ICMIRA.2013.45.

I. M. Ridho, Penggerombolan Provinsi-Provinsi di Indonesia Berdasarkan Indikator Pembangunan Berkelanjutan. Bogor: Skripsi: Institut Pertanian Bogor, 2018.

M. B. Cahyadahrena and I. S. Sitanggang, “Deteksi Pencilan Pada Data Titik Panas Menggunakan Clustering Berbasis Medoids,” IPB, 2015. [Online]. Available: http://repository.ipb.ac.id/handle/123456789/76080

D. A. I. C. Dewi and D. A. K. Pramita, “Analisis Perbandingan Metode Elbow dan Silhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” Matrix J. Manaj. Teknol. dan Inform., vol. 9, no. 3, pp. 102–109, 2019, doi: 10.31940/matrix.v9i3.1662.

D. Dwirohayati, “Pemetaan daerah rawan kriminalitas menggunakan k-means clustering Polrestabes Bandar Lampung,” Informatic Institute Business Darmajaya, Bandar Lampung., 2020.




DOI: http://dx.doi.org/10.12962%2Fj27213862.v8i3.21464

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats