Comparison of Ordinal Logistic Regression and Artificial Neural Network in Stunting Prevalence Classification
Abstract
Keywords
Full Text:
PDFReferences
Kementerian Kesehatan Republik Indonesia, Profil Kesehatan Indonesia Tahun 2019. Jakarta: Kementerian Kesehatan Republik Indonesia, 2019.
L. C. Sasmita, “PREVENTION OF CHILDHOOD STUNTING PROBLEMS WITH THE MAYANG–WATI PROGRAM,” Jurnal Layanan Masyarakat (Journal of Public Services), vol. 5, no. 1, pp. 140–150, May 2021, doi: 10.20473/jlm.v5i1.2021.140-150.
WHO, Reducing stunting in children: equity considerations for achieving the Global Nutrition Targets 2025. WHO, 2018.
Pusat Data dan Informasi, “Buletin Jendela Data dan Informasi Kesehatan : Semester I, 2018,” Jakarta, 2018.
Kementerian Kesehatan Republik Indonesia, “Status Gizi SSGI 2022,” Jakarta, 2022.
Y. G. Putra, Y. Yuhana, C. Fafilaya, E. Kurniatin, U. Sultan, and A. Tirtayasa, “Facilitation of Non-Formal Education for Families at Risk of Stunting Through Mobilization of Family Planning Instructors,” Jurnal Pemikiran Administrasi Negara, vol. 15, no. 2, pp. 534–542, 2023.
Badan Kependudukan dan Keluarga Berencana Nasional, “Laporan Percepatan Penurunan Stunting Tahun 2022 dan Rencana Aksi Tahun 2023,” Jakarta, 2023.
M. De Onis et al., “Prevalence thresholds for wasting, overweight and stunting in children under 5 years,” Public Health Nutr, vol. 22, no. 1, pp. 175–179, Jan. 2019, doi: 10.1017/S1368980018002434.
R. Qamar and B. A. Zardari, “Artificial Neural Networks: An Overview ,” Mesopotamian journal of Computer Science, vol. 2023, pp. 130–139, 2023.
J. Han, M. Kamber, J. Pei, and M. Kaufmann, “[DATA MINING: CONCEPTS AND TECHNIQUES 3RD EDITION] 2 Data Mining: Concepts and Techniques Third Edition.”
N. R. Panda, J. K. Pati, J. N. Mohanty, and R. Bhuyan, “A Review on Logistic Regression in Medical Research,” Apr. 01, 2022, MedSci Publications. doi: 10.55489/njcm.134202222.
D. G. Kleinbaum and M. Klein, Logistic Regression: A Self-Learning Text, Second Edition. New York: Springer, 2002.
D. W. Hosmer, Stanley. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression Third edition. New Jersey: John Wiley & Sons, Inc., 2013.
A. Agresti, An Introduction to Categorical Data Analysis, 3rd Edition. New Jersey: John Wiley & Sons, Inc., 2019. [Online]. Available: http://www.wiley.com/go/wsps
A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. Concepts, tools, and techniques to build intelligent systems. California: O’Reilly Media, Inc., 2019. [Online]. Available: http://oreilly.com
N. Shahid, T. Rappon, and W. Berta, “Applications of artificial neural networks in health care organizational decision-making: A scoping review,” PLoS One, vol. 14, no. 2, Feb. 2019, doi: 10.1371/journal.pone.0212356.
F. F. Addini, D. Haryanto, and R. A. Maolani, “Klasifikasi Tingkat Risiko Kerugian Kecelakaan berdasarkan Karakteristik Pengemudi dengan Analisis Regresi Logistik Ordinal,” Jurnal Matematika Integratif, vol. 18, no. 2, p. 167, Dec. 2022, doi: 10.24198/jmi.v18.n2.41317.167-177.
R. Kusumawardhani, Z. D. Rizqiena, and S. P. Astuti, Ekonometrika. Yogyakarta: CV Gerbang Media Aksara, 2021.
A. Agresti, Categorical data analysis: 3rd Edition. New Jersey: John Wiley & Sons, Inc, 2013.
M. Alwi Aliu and A. Fitrianto, “Pemodelan Regresi Logistik Ordinal Backward dengan Imputasi K-Nearest Neighbour pada Indeks Pembangunan Manusia di Indonesia Tahun 2021,” Jurnal Statistika dan Aplikasinya, vol. 7, no. 1, 2023.
S. S. Haykin, Neural networks and learning machines. Prentice Hall/Pearson, 2009.
D. Galih Pradana, M. L. Alghifari, M. Farhan Juna, and S. Dwisiwi Palaguna, “Klasifikasi Penyakit Jantung Menggunakan Metode Artificial Neural Network,” Indonesian Journal of Data and Science (IJODAS), vol. 3, no. 2, pp. 55–60, 2022.
O. A. Montesinos López, A. Montesinos López, and J. Crossa, Multivariate Statistical Machine Learning Methods for Genomic Prediction. Cham: Springer International Publishing, 2022. doi: 10.1007/978-3-030-89010-0.
R. M. Tharsanee, R. S. Soundariya, A. S. Kumar, M. Karthiga, and S. Sountharrajan, “Deep convolutional neural network-based image classification for COVID-19 diagnosis,” in Data Science for COVID-19 Volume 1: Computational Perspectives, Elsevier, 2021, pp. 117–145. doi: 10.1016/B978-0-12-824536-1.00012-5.
D. P. Kingma and J. Lei Ba, “ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION.”
A. C. Rencher, Methods of Multivariate Analysis Second Edition. John Willey & Sons Inc., 2002.
DOI: http://dx.doi.org/10.12962%2Fj27213862.v8i3.22287
Refbacks
- There are currently no refbacks.

Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats




