Comparison of Ordinal Logistic Regression and Artificial Neural Network in Stunting Prevalence Classification

May Risnawati, M. Fathurahman, Surya Prangga

Abstract


The prevalence of under-five stunting in one of the crucial health problems in Indonesia. Stunting is a growth and development disorder in children due to chronic malnutrition and repeat infections that can have a negative impact on children’s physical and cognitive development. This study aims to analyse the accuracy of the classification of the prevalence of stunting on regencies/cities in Indonesia, in 2022 using two methods, namely Ordinal Logistic Regression (OLR) and Artificial Neural Network (ANN). OLR is development of logistic regression applied to response variables with more the two categories that have levels or ranks, while ANN is a method that mimics the function of the biological nervous system and is designed for complex information processing. This study used two proportions of data splitting namely 80:20 and 90:10. Each method produce two models, OLR 1 and OLR 2 for the OLR method, and ANN 1 and ANN 2 for the ANN method. The results show that the ANN 1 model with 80:20 data proportion performs better than other models with an accuracy of 63.37%.

Keywords


ANN; classification; OLR; stunting.

Full Text:

PDF

References


Kementerian Kesehatan Republik Indonesia, Profil Kesehatan Indonesia Tahun 2019. Jakarta: Kementerian Kesehatan Republik Indonesia, 2019.

L. C. Sasmita, “PREVENTION OF CHILDHOOD STUNTING PROBLEMS WITH THE MAYANG–WATI PROGRAM,” Jurnal Layanan Masyarakat (Journal of Public Services), vol. 5, no. 1, pp. 140–150, May 2021, doi: 10.20473/jlm.v5i1.2021.140-150.

WHO, Reducing stunting in children: equity considerations for achieving the Global Nutrition Targets 2025. WHO, 2018.

Pusat Data dan Informasi, “Buletin Jendela Data dan Informasi Kesehatan : Semester I, 2018,” Jakarta, 2018.

Kementerian Kesehatan Republik Indonesia, “Status Gizi SSGI 2022,” Jakarta, 2022.

Y. G. Putra, Y. Yuhana, C. Fafilaya, E. Kurniatin, U. Sultan, and A. Tirtayasa, “Facilitation of Non-Formal Education for Families at Risk of Stunting Through Mobilization of Family Planning Instructors,” Jurnal Pemikiran Administrasi Negara, vol. 15, no. 2, pp. 534–542, 2023.

Badan Kependudukan dan Keluarga Berencana Nasional, “Laporan Percepatan Penurunan Stunting Tahun 2022 dan Rencana Aksi Tahun 2023,” Jakarta, 2023.

M. De Onis et al., “Prevalence thresholds for wasting, overweight and stunting in children under 5 years,” Public Health Nutr, vol. 22, no. 1, pp. 175–179, Jan. 2019, doi: 10.1017/S1368980018002434.

R. Qamar and B. A. Zardari, “Artificial Neural Networks: An Overview ,” Mesopotamian journal of Computer Science, vol. 2023, pp. 130–139, 2023.

J. Han, M. Kamber, J. Pei, and M. Kaufmann, “[DATA MINING: CONCEPTS AND TECHNIQUES 3RD EDITION] 2 Data Mining: Concepts and Techniques Third Edition.”

N. R. Panda, J. K. Pati, J. N. Mohanty, and R. Bhuyan, “A Review on Logistic Regression in Medical Research,” Apr. 01, 2022, MedSci Publications. doi: 10.55489/njcm.134202222.

D. G. Kleinbaum and M. Klein, Logistic Regression: A Self-Learning Text, Second Edition. New York: Springer, 2002.

D. W. Hosmer, Stanley. Lemeshow, and R. X. Sturdivant, Applied Logistic Regression Third edition. New Jersey: John Wiley & Sons, Inc., 2013.

A. Agresti, An Introduction to Categorical Data Analysis, 3rd Edition. New Jersey: John Wiley & Sons, Inc., 2019. [Online]. Available: http://www.wiley.com/go/wsps

A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. Concepts, tools, and techniques to build intelligent systems. California: O’Reilly Media, Inc., 2019. [Online]. Available: http://oreilly.com

N. Shahid, T. Rappon, and W. Berta, “Applications of artificial neural networks in health care organizational decision-making: A scoping review,” PLoS One, vol. 14, no. 2, Feb. 2019, doi: 10.1371/journal.pone.0212356.

F. F. Addini, D. Haryanto, and R. A. Maolani, “Klasifikasi Tingkat Risiko Kerugian Kecelakaan berdasarkan Karakteristik Pengemudi dengan Analisis Regresi Logistik Ordinal,” Jurnal Matematika Integratif, vol. 18, no. 2, p. 167, Dec. 2022, doi: 10.24198/jmi.v18.n2.41317.167-177.

R. Kusumawardhani, Z. D. Rizqiena, and S. P. Astuti, Ekonometrika. Yogyakarta: CV Gerbang Media Aksara, 2021.

A. Agresti, Categorical data analysis: 3rd Edition. New Jersey: John Wiley & Sons, Inc, 2013.

M. Alwi Aliu and A. Fitrianto, “Pemodelan Regresi Logistik Ordinal Backward dengan Imputasi K-Nearest Neighbour pada Indeks Pembangunan Manusia di Indonesia Tahun 2021,” Jurnal Statistika dan Aplikasinya, vol. 7, no. 1, 2023.

S. S. Haykin, Neural networks and learning machines. Prentice Hall/Pearson, 2009.

D. Galih Pradana, M. L. Alghifari, M. Farhan Juna, and S. Dwisiwi Palaguna, “Klasifikasi Penyakit Jantung Menggunakan Metode Artificial Neural Network,” Indonesian Journal of Data and Science (IJODAS), vol. 3, no. 2, pp. 55–60, 2022.

O. A. Montesinos López, A. Montesinos López, and J. Crossa, Multivariate Statistical Machine Learning Methods for Genomic Prediction. Cham: Springer International Publishing, 2022. doi: 10.1007/978-3-030-89010-0.

R. M. Tharsanee, R. S. Soundariya, A. S. Kumar, M. Karthiga, and S. Sountharrajan, “Deep convolutional neural network-based image classification for COVID-19 diagnosis,” in Data Science for COVID-19 Volume 1: Computational Perspectives, Elsevier, 2021, pp. 117–145. doi: 10.1016/B978-0-12-824536-1.00012-5.

D. P. Kingma and J. Lei Ba, “ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION.”

A. C. Rencher, Methods of Multivariate Analysis Second Edition. John Willey & Sons Inc., 2002.




DOI: http://dx.doi.org/10.12962%2Fj27213862.v8i3.22287

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats