Small Area Estimation of Child Poverty on Java Island In 2021 (Comparison of EBLUP and Hierarchical Bayes)

Nofita Istiana, Erwin Tanur, Azka Ubaidillah, Yuliana Ria Uli Sitanggang, Rosalinda Nainggolan

Abstract


Information about child poverty is very important to ensure that children get their rights. Indonesia's decentralized system requires child poverty data in each district/city. Data provision at this level is constrained by a non-specific sample design used for certain age groups, so the sample age group for children is not always sufficient for each district/city. Therefore, direct estimation produces a high relative standard error (RSE), so it requires small area estimation (SAE). SAE that is often used is EBLUP, which assumes that the variable of interest is normally distributed. Child poverty data does not meet the normality assumption, so SAE with Hierarchical Bayes with Beta distribution (HB Beta) is proposed in this study. The result is direct estimation, EBLUP, and HB Beta produce relatively similar estimated values, but HB Beta has the lowest RSE.

Keywords


Child poverty; HB Beta; RSE

Full Text:

PDF

References


BPS and UNICEF, Analisis Kemiskinan Anak dan Deprivasi Hak-Hak Dasar Anak di Indonesia. 2017.

I. K. Kertayana, “Kondisi Kemiskinan Anak Dan Harapan Sustainable Development Goals (Sdgs) Di Indonesia,” 2017.

KPPPA and BPS, “Indeks Perlindungan Anak Indonesia 2020,” 2020.

I. Molina and J. N. K. Rao, “Small Area Estimation of Poverty Indicators,” vol. 38, no. 3, pp. 369–385, 2010, doi: 10.1002/cjs.

M. D. Esteban, D. Morales, A. Pérez, and L. Santamaría, “Small Area Estimation Of Poverty Proportions Under Area-Level Time Models,” Comput. Stat. Data Anal., vol. 56, no. 10, pp. 2840–2855, 2012, doi: 10.1016/j.csda.2011.10.015.

M. Y. Darsyah and R. Wasono, “Pendugaan Tingkat Kemiskinan Di Kabupaten Sumenep Dengan Pendekatan SAE,” 2013.

T. Hobza, D. Morales, and L. Santamaría, “Small Area Estimation Of Poverty Proportions Under Unit-Level Temporal Binomial-Logit Mixed Models,” TEST, 2017, doi: 10.1007/s11749-017-0545-3.

R. Ghaniswati, A. Saefuddin, and A. Kurnia, “Nonstationary EBLUP on Prediction of Poverty Rate at Village Level in Lembata Regency,” vol. 6, no. 1, pp. 124–130, 2019.

D. Gartina and L. Khikmah, “Pendugaan Kemiskinan Menggunakan Small Area Estimation Dengan Pendekatan Emperical Best Linier Unbiased Prediction ( EBLUP ),” vol. 8, no. 2, 2020.

J. Wulansari, N. Permatasari, and A. Ubaidillah, “Pendugaan Area Kecil Persentase Anak-anak Usia Kurang dari 18 Tahun yang Hidup di Bawah Garis Kemiskinan Tingkat Kabupaten / Kota di Indonesia Tahun 2020,” pp. 383–394, 2022.

S. Horn, “Hilda Project Technical Paper Series (Guide to Standard Errors for Cross Section Estimates),” 2004.

P. Anjoy, H. Chandra, and P. Basak, “Estimation of Disaggregate-Level Poverty Incidence in Odisha Under Area-Level Hierarchical Bayes Small Area Model,” Soc. Indic. Res., vol. 144, no. 1, pp. 251–273, 2018, doi: 10.1007/s11205-018-2050-9.

J. N. K. Rao and I. Molina, Small Area Estimation. Hoboken, New Jersey: John Wiley &Sons, Inc., 2015.

W. M. Bolstad, Introduction to Bayesian Statistics. Hamilton, New Zealand: John Wiley & Sons, Inc, 2007. doi: 10.1137/1.9781611970654.

I. Ntzoufras, Bayesian Modeling Using WinBUGS. Hoboken, New Jersey: John Wiley & Sons, Inc., 2009.

D. P. M. Scollnik, “An Introduction to Markov Chain Monte Carlo Methods And Their Actuarial Applications,” pp. 114–165.




DOI: http://dx.doi.org/10.12962%2Fj27213862.v8i3.23311

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats