Estimation of Stunting and Wasting in Sumatra 2022 with Nadaraya-Watson Kernel and Penalized Spline
Abstract
Keywords
Full Text:
PDFReferences
R. L. Eubank, Nonparametric Regression and Spline Smoothing. New York: Marcel Dekker, Inc, 1999.
P. P. Gabrela, J. D. T. Purnomo, and I. N. Budiantara, “The Estimation of Mixed Truncated Spline and Fourier Series Estimator in Bi-Response Nonparametric Regression,” AIP Conf. Proc., vol. 2903, no. 1, 2023, doi: 10.1063/5.0177224.
I. Sriliana, I. N. Budiantara, and V. Ratnasari, “The Performance of Mixed Truncated Spline-Local Linear Nonparametric Regression Model for Longitudinal Data,” MethodsX, vol. 12, no. July 2023, 2024, doi: 10.1016/j.mex.2024.102652.
R. Hidayat, I. N. Budiantara, B. W. Otok, and V. Ratnasari, “The regression curve estimation by using mixed smoothing spline and kernel (MsS-K) model,” Commun. Stat. - Theory Methods, vol. 50, no. 17, pp. 3942–3953, 2021, doi: 10.1080/03610926.2019.1710201.
T. H. Ali, H. A. A. M. Hayawi, and D. S. I. Botani, “Estimation of the bandwidth parameter in Nadaraya-Watson kernel Non-Parametric Regression Based on Universal Threshold Level,” Commun. Stat. Simul. Comput., vol. 52, no. 4, pp. 1476–1489, 2021, doi: 10.1080/03610918.2021.1884719.
G. Yang, B. Zhang, and M. Zhang, “Estimation of Knots in Linear Spline Models,” J. Am. Stat. Assoc., vol. 118, no. 541, pp. 639–650, 2023, doi: 10.1080/01621459.2021.1947307.
D. Barry and W. Hardle, Applied Nonparametric Regression., 1st ed. Cambridge University Press., 1994. doi: 10.2307/2982873.
C. R. Oktarina, I. Sriliana, and S. Nugroho, “Penalized Spline Semiparametric Regression for Bivariate Response in Modeling Macro Poverty Indicators,” Indones. J. Appl. Stat., vol. 8, no. 1, pp. 13–23, 2025, doi: https://doi.org/10.13057/ijas.v8i1.94370.
K. Xie, F. Meng, and D. Zhang, “Regional Forecasting of PM2.5 Concentrations: A Novel Model Based on The Empirical Orthogonal Function Analysis and Nadaraya–Watson Kernel Regression Estimator,” Environ. Model. Softw., vol. 170, no. January, p. 105857, 2023, doi: 10.1016/j.envsoft.2023.105857.
A. R. Fadilah, A. Fitrianto, and I. M. Sumertajaya, “Outlier Identification on Penalized Spline Regression Modeling for Poverty Gap Index in Java,” BAREKENG J. Ilmu Mat. dan Terap., vol. 16, no. 4, pp. 1231–1240, 2022, doi: 10.30598/barekengvol16iss4pp1231-1240.
M. Blössner and M. de Onis, “Malnutrition Quantifying the Health Impact at National and Local Levels,” 12th ed., no. 12, Geneva: World Health Organization, 2005.
I. N. Budiantara, Regresi Nonparametrik Spline Truncated. Surabaya: ITS Press, 2019.
D. Ruppert, M. P. Wand, and R. . Carroll, Semiparametric Regression. Cambridge University Press, 2003. doi: 10.1201/9781420091984-c17.
Q. Yang, Q. Kang, Q. Huang, Z. Cui, Y. Bai, and H. Wei, “Linear correlation analysis of ammunition storage environment based on Pearson correlation analysis,” J. Phys. Conf. Ser., vol. 1948, no. 1, 2021, doi: 10.1088/1742-6596/1948/1/012064.
Sifriyani, A. R. M. Sari, A. T. R. Dani, and S. Jalaluddin, “Bi-Response Truncated Spline Nonparametric Regression With Optimal Knot Point Selection Using Generalized Cross-Validation in Diabetes Mellitus Patient’S Blood Sugar Levels,” Commun. Math. Biol. Neurosci., vol. 2023, pp. 1–18, 2023, doi: 10.28919/cmbn/7903.
S. Tosatto, R. Akrour, and J. Peters, “An Upper Bound of the Bias of Nadaraya-Watson Kernel Regression Under Lipschitz Assumptions,” Stats, vol. 4, no. 1, pp. 1–17, 2021, doi: 10.3390/stats4010001.
L. Selk and J. Gertheiss, “Nonparametric Regression and Classification with Functional, Categorical, and Mixed Covariates,” Adv. Data Anal. Classif., vol. 17, no. 2, pp. 519–543, 2022, doi: 10.1007/s11634-022-00513-7.
T. Misiakiewicz and B. Saeed, “A non-Asymptotic Theory of Kernel Ridge Regression: Deterministic Equivalents, Test Error, and GCV Estimator,” pp. 1–131, 2024, [Online]. Available: http://arxiv.org/abs/2403.08938
L. Yang and Y. Hong, “Adaptive Penalized Splines for Data Smoothing,” Comput. Stat. Data Anal., vol. 108, pp. 70–83, 2017, doi: 10.1016/j.csda.2016.10.022.
X. Li et al., “A Practical and Effective Regularized Polynomial Smoothing (RPS) Method for High-Gradient Strain Field Measurement In Digital Image Correlation,” Opt. Lasers Eng., vol. 121, no. April, pp. 215–226, 2019, doi: 10.1016/j.optlaseng.2019.04.017.
R. Pahlepi, I. Sriliana, W. Agwil, and C. R. Oktarina, “Biresponse Spline Truncated Nonparametric Regression Modeling for Longitudinal Data on Monthly Stock Prices of Three Private Banks in Indonesia,” Barekeng, vol. 19, no. 4, pp. 2467–2480, 2025, doi: 10.30598/barekengvol19iss4pp2467-2480.
I. Sriliana, I. N. Budiantara, and V. Ratnasari, “Poverty gap index modeling in Bengkulu Province using truncated spline regression for longitudinal data,” AIP Conf. Proc., vol. 2975, no. 1, 2023, doi: https://doi.org/10.1063/5.0181178.
World Health Organization, “Stunting in a Nutshell.” [Online]. Available: https://www.who.int/news/item/19-11-2015-stunting-in-a-nutshell
S. S. Anton, N. M. U. K. Dewi, and I. G. Adiba, “Kajian Determinan Stunting Pada Anak di Indonesia,” J. Yoga dan Kesehat., vol. 6, no. 2, pp. 201–217, 2023, doi: 10.25078/jyk.v6i2.2907.
D. A. Ningsih, “Kajian Determinan yang Berhubungan dengan Status Gizi Kurang pada Balita,” J. Ilmu Gizi Indones., vol. 3, no. 1, pp. 28–34, 2022, doi: 10.57084/jigzi.v3i1.885.
DOI: http://dx.doi.org/10.12962%2Fj27213862.v8i3.23330
Refbacks
- There are currently no refbacks.

Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats




