Earthquake Point Clustering Using Self Organizing Maps (SOM) In Sulawesi and Maluku Regions

Irwan Irwan, Ahmad Zaki, Eka Janivia Widiyaningrum

Abstract


Earthquakes pose a major threat in Indonesia, particularly in complex tectonic regions like Sulawesi and Maluku. To support disaster mitigation, this research employs the Self Organizing Maps (SOM) method—an unsupervised technique that reduces data dimensionality into an intuitive two-dimensional form—to cluster earthquake data using four key variables: longitude, latitude, magnitude, and depth. The dataset includes 5,275 earthquake records from 2022, sourced from the Meteorology, Climatology, and Geophysics Agency (BMKG). SOM training produced 25 neurons, which were then grouped into three optimal clusters using hierarchical clustering, validated by internal metrics: the lowest Connectivity Index (296.1512), highest Silhouette Index (0.3304), and a Dunn Index of 0.0058. Cluster 1, with 13 neurons, covers eastern Sulawesi and Maluku, featuring medium magnitude and depth. Cluster 2, with 11 neurons, represents central to southern Sulawesi, characterized by low magnitude and shallow depth. Cluster 3, comprising a single neuron, includes western regions with high-magnitude, very deep earthquakes.
Keywords⎯ Clustering, Earthquake, Internal Validation, Self Organizing Maps (SOM).


Keywords


Clustering; Earthquake; Internal Validation; Self Organizing Maps (SOM)

Full Text:

PDF

References


M. B. Siahaan and A. R. Rio, “Agglomerative Clustering of 2022 Earthquakes in North Sulawesi, Indonesia,” Buana Information Technology and Computer Sciences (BIT and CS, vol. 4, no. 2, pp. 76–84, Jul. 2023, [Online]. Available: https://repogempa.bmkg.go.id/

B. Rahman, T. W. Utami, and F. Fauzi, “Karakteristik Persebaran Kejadian Gempa Bumi di Pulau Sulawesi dan Maluku Berdasarkan Kovariat Gempa,” Prosiding Seminar Nasional Unimus, vol. 4, no. 2, pp. 76–84, Jul. 2021.

M. Faizan, M. F. Zuhairi, S. Ismail, and S. Sultan, “Applications of Clustering Techniques in Data Mining: A Comparative Study,” IJACSA) International Journal of Advanced Computer Science and Applications, vol. 11, no. 12, pp. 146–153, 2020.

C. Gunawan and H. Sirait, “Analysis of Unemployment Clusters In Indonesia Using The Self Organizing MAP Method,” International Journal of Mathematics, Statistics, and Computing, vol. 1, no. 3, pp. 8–15, 2023.

Hartatik and A. Satria Dwi Cahya, “Clusterisasi Kerusakan Gempa Bumi di Pulau Jawa Menggunakan SOM,” Jurnal Ilmiah Intech : Information Technology Journal of UMUS, vol. 2, no. 02, pp. 25–34, 2020.

A. R. Rayhani, W. Astuti, Z. Shufila, and E. Widodo, “Implementasi Self Organizing Map dalam Pengelompokkan Kabupaten di Jawa Barat berdasarkan Kasus Covid-19,” Jurnal Statistika dan Aplikasinya, vol. 5, no. 2, 2021.

S. Ilbeigipour, A. Albadvi, and E. Akhondzadeh Noughabi, “Cluster-Based Analysis of COVID-19 Cases Using Self-Organizing Map Neural Network and K-Means Methods to Improve Medical Decision-Making,” Inform Med Unlocked, vol. 32, Jan. 2022, doi: 10.1016/j.imu.2022.101005.

N. Nurul Halim and E. Widodo, “Clustering Dampak Gempa Bumi di Indonesia Menggunakan Kohonen Self Organizing Maps,” Seminar Nasional Integrasi Matematika dan Nilai Islami), vol. 1, no. 1, pp. 188–194, Jul. 2017.

N. Ulinnuh and R. Veriani, “Analisis Cluster dalam Pengelompokan Provinsi di Indonesia Berdasarkan Variabel Penyakit Menular Menggunakan Metode Complete Linkage dan Ward,” vol. 5, 2020, doi: 10.30743/infotekjar.v5i1.2464.

M. Khoncita Dasriana Bau, Y. Setyawan, and M. Titah Jatipaningrum, “Perbandingan Metode Algoritma K-Means Dan K-Medoids Pada Pengelompokan Kabupaten/Kota Di Provinsi Nusa Tenggara Timur Berdasarkan Dimensi Indeks Pembangunan Manusia Tahun 2020,” Jurnal Statistika Industri dan Komputasi, vol. 08, no. 1, pp. 48–57, 2023, [Online]. Available: https://ntt.bps.go.id.

F. Mayang Sari, R. Nur Hadiati, and W. Perinduri Sihotang, “Analisis Korelasi Pearson Jumlah Penduduk dengan Jumlah Kendaraan Bermotor di Provinsi Jambi,” vol. 2, no. 1, p. 39, Jun. 2023, doi: 10.22437/multiproximity.v2i1.25568.

M. Hernanda, A. Salma, D. Vionanda, and Z. Martha, “Penerapan Metode Self Organizing Maps (SOM) dalam Pengklasteran Berdasarkan Indikator Pemerlu Pelayanan Kesejahteraan Sosial (PPKS) Provinsi Jawa Barat,” UNP Journal of Statistics and Data Science, vol. 1, no. 4, pp. 329–336, Aug. 2023, doi: 10.24036/ujsds/vol1-iss4/82.

L. E. E. Awong and T. Zielinska, “Comparative Analysis of the Clustering Quality in Self-Organizing Maps for Human Posture Classification,” Sensors, vol. 23, no. 18, Sep. 2023, doi: 10.3390/s23187925.

V. Kotu and B. Deshpande, Data Science: Concepts and Practice, Second Edition. Morgan Kaufmann Publishers, 2019.

S. M. Guthikonda, “Kohonen Self-Organizing Maps,” 2005.

S. I. Febianca and U. D. Wustqa, “Analisis Cluster Produksi Tanaman Perkebunan menggunakan Algoritma Self Organizing Map (SOM),” Jurnal Kajian dan Terapan Matematika, vol. 9, pp. 29–30, Mar. 2023.

U. Asan and S. Ercan, An Introduction to Self-Organizing Maps, vol. 6. Istanbul: Atlantis Press Book, 2012.

M. A. Nur, “Gempa Bumi, Tsunami Dan Migitasinya,” Jurnal Geografi, vol. 7, no. 1, pp. 66–73, 2010.

D. P. Utomo and B. Purba, “Penerapan Datamining pada Data Gempa Bumi Terhadap Potensi Tsunami di Indonesia,” in Prosiding Seminar Nasional Riset Information Science (SENARIS), Sep. 2019, pp. 846–853.

R. Wehrens and L. M. Buydens, “Self and Super-Organizing Maps in R: The Kohonen Package,” J Stat Softw, vol. 21, pp. 1–19, 2007.




DOI: http://dx.doi.org/10.12962%2Fj27213862.v8i3.23331

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats