Forecasting Indonesia's Non-Oil and Gas Exports Using Facebook Prophet: A Seasonal and Trend Analysis
Abstract
Keywords
Full Text:
PDFReferences
M. Purba, M. Sihombing, and J. Sihotang, “ANALISIS PENGARUH EKSPOR MIGAS, EKSPOR NON MIGAS DAN PENANAMAN MODAL ASING TERHADAP PERTUMBUHAN EKONOMI INDONESIA TAHUN 2000-2019,” J Econ Bus, 2021, doi: 10.36655/jeb.v2i2.557.
S. Aisyah and T. D. Renggani, “DETERMINANTS OF INDONESIA NON-OIL AND GAS EXPORTS TO NON-TRADITIONAL MARKET,” vol. 5, 2021, doi: 10.29040/IJEBAR.V5I3.3310.
Badan Pusat Statistik, “Nilai Ekspor Migas-NonMigas (Juta US$), 2025.” Accessed: May 04, 2025. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/MTc1MyMy/nilai-ekspor-migas-nonmigas.html
Badan Pusat Statistik, “Perkembangan Ekspor dan Impor Indonesia Januari 2025,” Jakarta, 2025.
K. A. Rijal, A. V. Vitianingsih, Y. Kristyawan, A. Maukar, and S. F. A. Wati, “Forecasting Model of Indonesia’s Oil & Gas and Non-Oil & Gas Export Value using Var and LSTM Methods,” Jurnal Teknologi dan Manajemen Informatika, 2024, doi: 10.26905/jtmi.v10i1.13127.
W. Xie, L. Yu, S. Xu, and S. Wang, “A New Method for Crude Oil Price Forecasting Based on Support Vector Machines,” pp. 444–451, 2006, doi: 10.1007/11758549_63.
L. Yu, X. Zhang, and S. Wang, “Assessing Potentiality of Support Vector Machine Method in Crude Oil Price Forecasting,” Eurasia journal of mathematics, science and technology education, vol. 13, pp. 7893–7904, 2017, doi: 10.12973/ejmste/77926.
H. Awijen, H. Ameur, Z. Ftiti, and W. Louhichi, “Forecasting oil price in times of crisis: a new evidence from machine learning versus deep learning models,” Ann. Oper. Res., vol. 345, pp. 979–1002, 2023, doi: 10.1007/s10479-023-05400-8.
L. Jovanovic et al., “Multi-Step Crude Oil Price Prediction Based on LSTM Approach Tuned by Salp Swarm Algorithm with Disputation Operator,” Sustainability, 2022, doi: 10.3390/su142114616.
M. F. Maulana, S. Sa’adah, and P. E. Yunanto, “Crude Oil Price Forecasting Using Long Short-Term Memory,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, 2021, doi: 10.26555/jiteki.v7i2.21086.
H. Aldabagh, X. Zheng, and R. Mukkamala, “A Hybrid Deep Learning Approach for Crude Oil Price Prediction,” Journal of Risk and Financial Management, 2023, doi: 10.3390/jrfm16120503.
E. Žunić, K. Korjenić, K. Hodzic, and D. Donko, “Application of Facebook’s Prophet Algorithm for Successful Sales Forecasting Based on Real-world Data,” IRPN: Innovation Strategy (Topic), 2020, doi: 10.5121/ijcsit.2020.12203.
B. K. Jha and S. Pande, “Time Series Forecasting Model for Supermarket Sales using FB-Prophet,” 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), pp. 547–554, 2021, doi: 10.1109/iccmc51019.2021.9418033.
Y. Liu, G. Feng, K. Chin, S. Sun, and S. Wang, “Daily tourism demand forecasting: the impact of complex seasonal patterns and holiday effects,” Current Issues in Tourism, vol. 26, pp. 1573–1592, 2022, doi: 10.1080/13683500.2022.2060067.
I. Önder, U. Gunter, and S. Gindl, “Utilizing Facebook Statistics in Tourism Demand Modeling and Destination Marketing,” J Travel Res, vol. 59, pp. 195–208, 2020, doi: 10.1177/0047287519835969.
S. Bouhaddour, C. Saadi, I. Bouabdallaoui, M. Sbihi, and F. Guerouate, “A Novel Hybrid Approach for Daily Tourism Arrival Forecasting: The PROPHET-Bayesian Gaussian Process-Forward Neural Network Model,” Ingénierie des systèmes d information, 2023, doi: 10.18280/isi.280404.
A. B. Sinaga, R. P. Sari, and N. Nurviana, “Forecasting The Amount Of Oil and Non-Oil and Gas Exports In Indonesia Using The Box-Jenkins Method,” Mathline : Jurnal Matematika dan Pendidikan Matematika, 2023, doi: 10.31943/mathline.v8i4.403.
N. Nairob, E. Russel, A. Ambya, A. Darmawan, M. Usman, and W. Wamiliana, “DYNAMIC MODELING DATA EXPORT OIL AND GAS AND NON-OIL AND GAS BY ARMA(2,1)-GARCH(1,1) MODEL: STUDY OF INDONESIAN’S EXPORT OVER THE YEARS 2008-2019,” International Journal of Energy Economics and Policy, vol. 10, pp. 175–184, 2020, doi: 10.32479/ijeep.9892.
Bustami, A. Yolanda, and N. Thahira, “Forecasting Non-Oil and Gas Exports in Indonesia Using Double and Triple Exponential Smoothing Methods,” International Journal of Industrial Engineering and Engineering Management, 2023, doi: 10.24002/ijieem.v5i1.6211.
M. S. Borahima, H. Sain, I. Setiawan, and F. Fadri, “Implementation of the Fuzzy Time Series Singh Method for Forecasting Non-Oil and Gas Export Values in Indonesia,” BERKALA SAINSTEK, 2024, doi: 10.19184/bst.v12i3.52663.
M. Firdaus and Suwanda, “Pemodelan Metode Fuzzy Time Series Stevenson-Porter pada Nilai Peramalan Ekspor Non-Migas di Indonesia,” Bandung Conference Series: Statistics, 2023, doi: 10.29313/bcss.v3i2.9512.
S. A. W. Dinata, A. A. Purbosari, and P. Hasanah, “Forecasting Indonesian Oil, Non-Oil and Gas Import Export with Fuzzy Time Series,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 2022, doi: 10.22146/ijccs.78399.
B. H. Winarno, D. Kusumawati, H. A. Triyanto, and B. H. Winarno, “PENERAPAN MACHINE LEARNING (MODEL PROPHET) DALAM PREDIKSI PERMINTAAN PRODUK UNTUK MENGOPTIMALKAN INVENTORI,” no. November, pp. 168–174, 2024.
A. Subashini, K. Sandhiya, S. Saranya, and U. Harsha, “Forecasting Website Traffic Using Prophet Time Series Model,” International Research Journal of Multidisciplinary Technovation, vol. 1, no. 1, pp. 56–63, 2019, doi: 10.34256/irjmt1917.
S. J. Taylor and B. Letham, “Business Time Series Forecasting at Scale,” PeerJ Preprints 5:e3190v2, vol. 35, no. 8, pp. 48–90, 2017.
F. B. Wijaya, D. P. Putra, M. Azzahra, F. Arina, and F. Ikhsan, “Forecasting the Open Unemployment Rate in Banten Province Using the FB Prophet Method in Python Programming Language,” Tirtayasa Journal of Statistics, vol. 01, no. 01, 2025.
DOI: http://dx.doi.org/10.12962%2Fj27213862.v8i3.23337
Refbacks
- There are currently no refbacks.

Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats




