Forecasting Indonesia's Non-Oil and Gas Exports Using Facebook Prophet: A Seasonal and Trend Analysis

Erfiani Erfiani, Ferdian Bangkit Wijaya

Abstract


This study aims to analyze and predict the trend of Indonesia's non-oil and gas exports using the Facebook Prophet model, focusing on identifying seasonal patterns, trends, and volatility present in the export data. Monthly export data from 2015 to 2025, sourced from the Statistics Indonesia (BPS), were used as the basis for analysis. The dataset revealed notable seasonal patterns and substantial volatility, particularly in the period following 2020. To model these dynamics, three Prophet model configurations were tested: one considering only annual seasonality, combining both annual and monthly seasonality, and another incorporating only monthly seasonality. The evaluation of these models showed with an initial Mean Absolute Percentage Error (MAPE) of 8.70%. This model was then optimized through hyperparameter tuning. The optimal parameter configuration (changepoint_prior_scale = 0.5, seasonality_prior_scale = 0.01, fourier_order = 3) resulted in a significant improvement, reducing the MAPE to 4.73%. This optimized model demonstrated its capacity to more precisely capture the complex patterns. Furthermore, the study projected Indonesia’s non-oil and gas exports for the period from April 2025 to December 2026. The projections indicate a relatively stable export trend within the range of 20,000 to 22,000 million USD per month, with consistent seasonal patterns.

Keywords


facebook prophet; forecasting; hyperparameter tuning; non-oil and gas exports; time series

Full Text:

PDF

References


M. Purba, M. Sihombing, and J. Sihotang, “ANALISIS PENGARUH EKSPOR MIGAS, EKSPOR NON MIGAS DAN PENANAMAN MODAL ASING TERHADAP PERTUMBUHAN EKONOMI INDONESIA TAHUN 2000-2019,” J Econ Bus, 2021, doi: 10.36655/jeb.v2i2.557.

S. Aisyah and T. D. Renggani, “DETERMINANTS OF INDONESIA NON-OIL AND GAS EXPORTS TO NON-TRADITIONAL MARKET,” vol. 5, 2021, doi: 10.29040/IJEBAR.V5I3.3310.

Badan Pusat Statistik, “Nilai Ekspor Migas-NonMigas (Juta US$), 2025.” Accessed: May 04, 2025. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/MTc1MyMy/nilai-ekspor-migas-nonmigas.html

Badan Pusat Statistik, “Perkembangan Ekspor dan Impor Indonesia Januari 2025,” Jakarta, 2025.

K. A. Rijal, A. V. Vitianingsih, Y. Kristyawan, A. Maukar, and S. F. A. Wati, “Forecasting Model of Indonesia’s Oil & Gas and Non-Oil & Gas Export Value using Var and LSTM Methods,” Jurnal Teknologi dan Manajemen Informatika, 2024, doi: 10.26905/jtmi.v10i1.13127.

W. Xie, L. Yu, S. Xu, and S. Wang, “A New Method for Crude Oil Price Forecasting Based on Support Vector Machines,” pp. 444–451, 2006, doi: 10.1007/11758549_63.

L. Yu, X. Zhang, and S. Wang, “Assessing Potentiality of Support Vector Machine Method in Crude Oil Price Forecasting,” Eurasia journal of mathematics, science and technology education, vol. 13, pp. 7893–7904, 2017, doi: 10.12973/ejmste/77926.

H. Awijen, H. Ameur, Z. Ftiti, and W. Louhichi, “Forecasting oil price in times of crisis: a new evidence from machine learning versus deep learning models,” Ann. Oper. Res., vol. 345, pp. 979–1002, 2023, doi: 10.1007/s10479-023-05400-8.

L. Jovanovic et al., “Multi-Step Crude Oil Price Prediction Based on LSTM Approach Tuned by Salp Swarm Algorithm with Disputation Operator,” Sustainability, 2022, doi: 10.3390/su142114616.

M. F. Maulana, S. Sa’adah, and P. E. Yunanto, “Crude Oil Price Forecasting Using Long Short-Term Memory,” Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, 2021, doi: 10.26555/jiteki.v7i2.21086.

H. Aldabagh, X. Zheng, and R. Mukkamala, “A Hybrid Deep Learning Approach for Crude Oil Price Prediction,” Journal of Risk and Financial Management, 2023, doi: 10.3390/jrfm16120503.

E. Žunić, K. Korjenić, K. Hodzic, and D. Donko, “Application of Facebook’s Prophet Algorithm for Successful Sales Forecasting Based on Real-world Data,” IRPN: Innovation Strategy (Topic), 2020, doi: 10.5121/ijcsit.2020.12203.

B. K. Jha and S. Pande, “Time Series Forecasting Model for Supermarket Sales using FB-Prophet,” 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), pp. 547–554, 2021, doi: 10.1109/iccmc51019.2021.9418033.

Y. Liu, G. Feng, K. Chin, S. Sun, and S. Wang, “Daily tourism demand forecasting: the impact of complex seasonal patterns and holiday effects,” Current Issues in Tourism, vol. 26, pp. 1573–1592, 2022, doi: 10.1080/13683500.2022.2060067.

I. Önder, U. Gunter, and S. Gindl, “Utilizing Facebook Statistics in Tourism Demand Modeling and Destination Marketing,” J Travel Res, vol. 59, pp. 195–208, 2020, doi: 10.1177/0047287519835969.

S. Bouhaddour, C. Saadi, I. Bouabdallaoui, M. Sbihi, and F. Guerouate, “A Novel Hybrid Approach for Daily Tourism Arrival Forecasting: The PROPHET-Bayesian Gaussian Process-Forward Neural Network Model,” Ingénierie des systèmes d information, 2023, doi: 10.18280/isi.280404.

A. B. Sinaga, R. P. Sari, and N. Nurviana, “Forecasting The Amount Of Oil and Non-Oil and Gas Exports In Indonesia Using The Box-Jenkins Method,” Mathline : Jurnal Matematika dan Pendidikan Matematika, 2023, doi: 10.31943/mathline.v8i4.403.

N. Nairob, E. Russel, A. Ambya, A. Darmawan, M. Usman, and W. Wamiliana, “DYNAMIC MODELING DATA EXPORT OIL AND GAS AND NON-OIL AND GAS BY ARMA(2,1)-GARCH(1,1) MODEL: STUDY OF INDONESIAN’S EXPORT OVER THE YEARS 2008-2019,” International Journal of Energy Economics and Policy, vol. 10, pp. 175–184, 2020, doi: 10.32479/ijeep.9892.

Bustami, A. Yolanda, and N. Thahira, “Forecasting Non-Oil and Gas Exports in Indonesia Using Double and Triple Exponential Smoothing Methods,” International Journal of Industrial Engineering and Engineering Management, 2023, doi: 10.24002/ijieem.v5i1.6211.

M. S. Borahima, H. Sain, I. Setiawan, and F. Fadri, “Implementation of the Fuzzy Time Series Singh Method for Forecasting Non-Oil and Gas Export Values in Indonesia,” BERKALA SAINSTEK, 2024, doi: 10.19184/bst.v12i3.52663.

M. Firdaus and Suwanda, “Pemodelan Metode Fuzzy Time Series Stevenson-Porter pada Nilai Peramalan Ekspor Non-Migas di Indonesia,” Bandung Conference Series: Statistics, 2023, doi: 10.29313/bcss.v3i2.9512.

S. A. W. Dinata, A. A. Purbosari, and P. Hasanah, “Forecasting Indonesian Oil, Non-Oil and Gas Import Export with Fuzzy Time Series,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 2022, doi: 10.22146/ijccs.78399.

B. H. Winarno, D. Kusumawati, H. A. Triyanto, and B. H. Winarno, “PENERAPAN MACHINE LEARNING (MODEL PROPHET) DALAM PREDIKSI PERMINTAAN PRODUK UNTUK MENGOPTIMALKAN INVENTORI,” no. November, pp. 168–174, 2024.

A. Subashini, K. Sandhiya, S. Saranya, and U. Harsha, “Forecasting Website Traffic Using Prophet Time Series Model,” International Research Journal of Multidisciplinary Technovation, vol. 1, no. 1, pp. 56–63, 2019, doi: 10.34256/irjmt1917.

S. J. Taylor and B. Letham, “Business Time Series Forecasting at Scale,” PeerJ Preprints 5:e3190v2, vol. 35, no. 8, pp. 48–90, 2017.

F. B. Wijaya, D. P. Putra, M. Azzahra, F. Arina, and F. Ikhsan, “Forecasting the Open Unemployment Rate in Banten Province Using the FB Prophet Method in Python Programming Language,” Tirtayasa Journal of Statistics, vol. 01, no. 01, 2025.




DOI: http://dx.doi.org/10.12962%2Fj27213862.v8i3.23337

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats