Analysis of Vegetation Density and Surface Temperature in Buahbatu District, Bandung using Landsat 8 Oli/Tirs Satellite Images

Riki Purnama Putra, Rena Denya Agustina, Khansa Qurratu’Aini, Kanya Adwasyifa

Abstract


Urban Heat Island is a phenomenon of increasing temperature that occurs in the city area compared to the surrounding area. Urban Heat Island is caused by reduced vegetation due to changes in rural land use to urban areas. This study was conducted to analysis the relation between vegetation density (NDVI) and surface temperature (LST) in Buahbatu District as an effort to control the impact of the Urban Heat Island phenomenon. This research was conducted by processing data from Landsat 8 OLI/TIRS satellite images in 2019-2020, namely from May to October 2019 and May to October 2020. Data collection was carried out through Google Earth Engine to retrieve geospatial data visualization (satellite imagery) and USGS to download Landsat 8 satellite imagery on Bands 4 and 5, then the data is processed using Arcmap, and Pearson correlation test is performed on SPSS. The results obtained are a correlation between vegetation density and surface temperature. In Buahbatu District, the correlation between vegetation density and surface temperature shows a value of (-.403*) in 2019 and (-.386*) in 2020. Both show a negative correlation, which means that if an area has high vegetation density, the surface temperature will decrease, and vice versa. In addition, Buahbatu District gets a good UHI with an NDVI above 0.25, and an LST below 30 but not less than 25.

Keywords


NDVI; Land Surface Temperature; LST; Urban Heat Island

Full Text:

PDF

References


BPS Provinsi Jawa Barat, ”Temperatur, Curah Hujan, dan Hari Hujan di Bandung, 2009-2014”, Badan Pusat Statistik Provinsi Jawa Barat, 2015.

M. A. Priatna and E. C. Djamal, ”Precipitation prediction using recurrent neural networks and long short-term memory,”Telkomnika (Telecommunication Comput. Electron. Control), vol. 18, no. 5, pp. 2525-2532, 2020.

B. E. B. Dewantoro, P. A. Natani, and Z. Islamiah, ”Analisis Surface Urban Heat Island Menggunakan Teknik Penginderaan Jauh Berbasis Cloud Computing Pada Google Earth Engine Di Kota Samarinda,” Semin. Nas. Geomatika, no. October, p. 75, 2021.

R. C. Zulkarnain, ”Pengaruh Perubahan Tutupan Lahan Terhadap Perubahan Suhu Permukaan di Kota Surabaya,” Skripsi Inst. Teknol. Sepuluh Nop., 2016.

F. Ihsan and D. Rosleine, ”Cooling effect to mitigate Urban Heat Island by Pterocarpus indicus, Swietenia macrophylla and Samanea saman in Bandung, West Java Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 528, no. 1, 2020.

U.S. Environmental protection Agency, ”2013 U.S. Environmental Protection Agency (EPA) International Decontamination Research and Development,” Durham, 2014.

S. Kang, R. Yang, H. Ozer, and I. L. Al-Qadi, ”Life-cycle greenhouse gases and energy consumption for material and construction phases of pavement with traffic delay,” Transp. Res. Rec., vol. 2428, no. 1, pp. 27-34, 2014.

N. Maryantika, L. M. Jaelani, and A. Setiyoko, ”Analisa perubahan vegetasi ditinjau dari tingkat ketinggian dan kemiringan lahan menggunakan citra satelit Landsat dan Spot 4 (Studi kasus kabupaten Pasuruan),” Geoid, vol. 7, no. 1, pp. 098-100, 2011.

K. Deilami, M. Kamruzzaman, and Y. Liu, ”Urban heat island effect: A systematic review of spatio-temporal factors, data, methods, and mitigation measures,” Int. J. Appl. earth Obs. Geoinf., vol. 67, pp. 30-42, 2018.

V. R. S. Cheela, M. John, W. Biswas, and P. Sarker, ”Combating urban heat island effectA review of reflective pavements and tree shading strategies,” Buildings, vol. 11, no. 3, p. 93, 2021.

J. Peng et al., ”How to effectively mitigate urban heat island effect? A perspective of waterbody patch size threshold,” Landsc. Urban Plan., vol. 202, p. 103873, 2020.

J. Yang, Y. Wang, C. Xiu, X. Xiao, J. Xia, and C. Jin, ”Optimizing local climate zones to mitigate urban heat island effect in human settlements,” J. Clean. Prod., vol. 275, p. 123767, 2020.

R. P. Putra, I. Ramadhanti, S. Andhika, R. D. Agustina, and P. Pitriana, ”Pengaruh Kecerdasan Emosional terhadap Literasi Digital Praktikum Virtual Fisika pada Sudut Pandang Gender Mahasiswa,” WaPFi (Wahana Pendidik. Fis.), vol. 7, no. 1, pp. 46-51, 2022.

N. Wachid and W. P. Tyas, ”Analisis Transformasi NDVI dan kaitannya dengan LST Menggunakan Platform Berbasis Cloud:

Google Earth Engine,” J. Planol., vol. 19, no. 1, pp. 60-74, 2022.

A. R. Sagita, A. S. C. Margaliu, F. Rizal, and H. P. Mazzaluna, ”Analisis Korelasi Suhu Permukaan, NDVI, Elevasi dan Pola Perubahan Suhu Daerah Panas Bumi Rendingan Ulubelu-Waypanas, Tanggamus Menggunakan Citra Landsat 8 OLI/TIRS,” J. Geosains dan Remote Sens., vol. 3, no. 1, pp. 43-51, 2022.

A. F. Mabrur, N. A. Setiawan, and I. Ardiyanto, ”Remote Sensing Technology for Land Farm Mapping Based on NDMI, NDVI, and LST Feature,” IJITEE (International J. Inf. Technol. Electr. Eng.), vol. 3, no. 3, pp. 75-79, 2019.

Y. Li, Y. Sun, J. Li, and C. Gao, ”Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities, ”Sustain. Cities Soc., vol. 63, p. 102425, 2020.

A. Priana, A. Nugroho, E. Purnamasari, M. Rais, and Y.A. Perlambang, ”The Pattern of Spatial Distribution of Agriculture Drought Using Landsat 8 OLI/TIRS in Bacukiki District, City of Parepare,” in The 6th Geoinformation Science Symposium 2019, p. 14, 2020.

D. M. Indrawati, S. Suharyadi, and P. Widayani, ”Analisis Pengaruh Kerapatan Vegetasi Terhadap Suhu Permukaan dan Keterkaitannya Dengan Fenomena UHI,” Media Komun. Geogr., vol. 21, no. 1, p. 99, 2020.

M. Dede, G. P. Pramulatsih, M. A. Widiawaty, Y. R. R. Ramadhan, and A. Ati, ”Dinamika Suhu Permukaan Dan Kerapatan Vegetasi Di Kota Cirebon,” Jurnal Meteorologi Klimatologi dan Geofisika, vol. 6, no. 1, pp. 23-30, 2019.




DOI: http://dx.doi.org/10.12962/j24604682.v18i3.12739

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.