Fabrication of Polyaniline Thin Film Using Electrodeposition Method as Alcohol Sensor

Ana Yuli Komariyah, Nugrahani Primary Putri

Abstract


The use of aliphatic alcohols such as methanol as an alternative renewable fuel in high-density engines can harm both the environment and human health. Polyaniline (PANi), a conductive polymer, has emerged as a solution to this problem because of its benefits as a sensor with relatively high conductivity. In this study, PANi was synthesized using a potentiostat electrodeposition method at a constant potential of -0.4 to +1.0 V at a scan rate of 100 mV/s, resulting in a thin film of PANi on the ITO surface. The formed PANi samples were used to determine the sensitivity level of the sensor to methanol at different concentrations. Morphological results of PANi deposited on the ITO surface were observed using SEM showing the shape of nanoparticles with an interconnected-sponge structure and a porous shape with a diameter of 35.3 nm. The PANI sample can be applied as a sensor material for detecting alcohol vapour in indoor air (at room temperature). The sensing measurement results show that the PANi-based sensor can detect methanol vapour at low concentrations up to 5 ppm. The higher the methanol concentration used, the higher the sensor sensitivity.

Keywords


PANi; ITO; electrodeposition; alcohol sensor

Full Text:

PDF

References


B. Sitorus, R. D. R. Hidayat, and O. Prasetya, ”Pengelolaan penggunaan bahan bakar minyak yang efektif pada transportasi darat,” J. Manaj. Transp. Logistik, vol. 1, no. 2, pp. 117126, 2014.

G. Capriolo and A. A. Konnov, ”Combustion of propanol isomers: Experimental and kinetic modeling study,” Combust. Flame, vol. 218, pp. 189204, 2020.

S. M. Sarathy, P. Oβwald, N. Hansen, and K. Kohse-Hoinghaus, ”Alcohol combustion chemistry,” Prog. energy Combust. Sci., vol. 44, pp. 40102, 2014.

J. Han, L. M. T. Somers, R. Cracknell, A. Joedicke, R. Wardle, and V. R. R. Mohan, ”Experimental investigation of ethanol/diesel dual-fuel combustion in a heavy-duty diesel engine,” Fuel, vol. 275, p. 117867, 2020.

L. O. Peres, R. W. C. Li, E. Y. Yamauchi, R. Lippi, and J. Gruber, ”Conductive polymer gas sensor for quantitative detection of methanol in Brazilian sugar-cane spirit,” Food Chem., vol. 130, no. 4, pp. 11051107, 2012.

G. Morozov, V. Breus, S. Nekludov, and I. Breus, ”Sorption of volatile organic compounds and their mixtures on montmorillonite at different humidity,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 454, pp. 159171, 2014.

N. G. Pramod, S. N. Pandey, and P. P. Sahay, ”Structural, optical and methanol sensing properties of sprayed In2O3 nanoparticle thin films,” Ceram. Int., vol. 38, no. 5, pp. 41514158, 2012.

M. Mahato and B. Adhikari, ”Vapor phase sensing response of doped polyaniline-poly (vinyl alcohol) composite membrane to different aliphatic alcohols,” Synth. Met., vol. 220, pp. 410420, 2016.

R. H. Wibawanto and D. Darminto, ”Elektropolimerisasi film polianilin dengan metode galvanostatik dan pengukuran laju pertumbuhannya,” JFA (Jurnal Fis. dan Apl., vol. 8, no. 1, pp. 120101120104, 2012.

Y. Li, Z. Li, and F. Zheng, ”Polyaniline/silver/cerium nitrate ternary composite: Synthesis, characterization and enhanced electrochemical properties,” J. Appl. Polym. Sci., vol. 132, no. 46, 2015.

S. A. Akbar, A. Mardhiah, N. Saidi, and L. Lelifajri, ”Sintesis Dan Karakterisasi Polianilina (PANI) Dengan Variasi Doping Asam Kuat Menggunakan Metoda Elektrodeposisi,” in Prosiding Seminar Nasional USM, 2017, vol. 1, no. 1.

R. B. Patil, A. A. Jatratkar, R. S. Devan, Y Ma, R. K. Puri, V. Puri, and J. B. Yadav, “Effect of pH on the properties of chemical bath deposited polyaniline thin film,” Appl. Surf. Sci., vol. 327, pp. 201–204, 2015.

E. A. Ozerol, B. F. S¸ enkal, and M. Okutan, ”Preparation and characterization of graphite composites of polyaniline,” Microelectron. Eng., vol. 146, pp. 7680, 2015.

N. Li, Y. Xiao, C. Xu, H. Li, and X. Yang, ”Facile preparation of polyaniline nanoparticles via electrodeposition for supercapacitors,” Int. J. Electrochem. Sci., vol. 8, pp. 11811188, 2013.

M. Beygisangchin, S. Abdul Rashid, S. Shafie, A. R. Sadrolhosseini, and H. N. Lim, “Preparations, properties, and applications of polyaniline and polyaniline thin films—A review,” Polymers (Basel)., vol. 13, no. 12, p. 2003, 2021..

M. Joulazadeh and A. H. Navarchian, ”Alcohol sensibility of one-dimensional polyaniline and polypyrrole nanostructures,” IEEE Sens. J., vol. 15, no. 3, pp. 16971704, 2014.

A. Saaedi, P. Shabani, and R. Yousefi, ”High performance of methanol gas sensing of ZnO/PANi nanocomposites synthesized under different magnetic field,” J. Alloys Compd., vol. 802, pp. 335344, 2019.

E. B. Aydın and M. K. Sezginturk, ”Indium tin oxide (ITO): A promising material in biosensing technology,” TrAC Trends Anal. Chem., vol. 97, pp. 309315, 2017.

Y. E. Firat and A. Peksoz, ”Electrochemical synthesis of polyaniline/ inorganic salt binary nanofiber thin films for electrochromic applications,” J. Mater. Sci. Mater. Electron., vol. 28, no. 4, pp. 35153522, 2017.

W. X. Jin, S. Y. Ma, Z. Z. Tie, X. H. Jiang, W. Q. Li, J. Luo, X. L. Xu, and T.T Wang, ”Hydrothermal synthesis of monodisperse porous cube, cake and spheroid-like α-Fe2O3 particles and their high gas sensing properties,” Sensors Actuators B Chem., vol. 220, pp. 243254, 2015.

Z. Li, X. Zhou, J. Shi, X. Zou, X. Huang, and H. E. Tahir, ”Preparation of conducting polyaniline/protoporphyrin composites and their application for sensing VOCs,” Food Chem., vol. 276, pp. 291 297, 2019.

J. Fernandez, J. Bonastre, J. Molina, A. I. Del Rio, and F. Cases, ”Study on the specific capacitance of an activated carbon cloth modified with reduced graphene oxide and polyaniline by cyclic voltammetry,” Eur. Polym. J., vol. 92, pp. 194203, 2017.

A. Mehto, V. R. Mehto, J. Chauhan, I. Singh, and R. Pandey, ”Preparation and characterization of polyaniline/ZnO composite sensor,” J. Nanomed. Res, vol. 5, p. 104, 2017.

N. Carrillo, U. León-Silva, T. Avalos, M. E. Nicho, S. Serna, F. Castillon, M. Farias, and R. Cruz-Silva, “Enzymatically synthesized polyaniline film deposition studied by simultaneous open circuit potential and electrochemical quartz crystal microbalance measurements,” J. Colloid Interface Sci., vol. 369, no. 1, pp. 103–110, 2012.

S. Bilal, A. Akbar, and A.-H. A. Shah, ”Highly selective and reproducible electrochemical sensing of ascorbic acid through a conductive polymer coated electrode,” Polymers (Basel)., vol. 11, no. 8, p. 1346, 2019.

A. Korent, K. Žagar Soderžnik, S. Šturm, K. Žužek Rožman, N. Redon, J. Wojkiewicz, and C. Duc, ”Facile Fabrication of an ammonia-gas sensor using electrochemically synthesised polyaniline on commercial screen- printed three-electrode systems,” Sensors, vol. 21, no. 1, p. 169, 2020.

M. Zhang, A. Nautiyal, H. Du, Z. Wei, X. Zhang, and R. Wang, ”Electropolymerization of polyaniline as high-performance binder free electrodes for flexible supercapacitor,” Electrochim. Acta, vol. 376, p. 138037, 2021.

C. C. Buron, B. Lakard, A. F. Monnin, V. Moutarlier, and S. Lakard, ”Elaboration and characterization of polyaniline films electrodeposited on tin oxides,” Synth. Met., vol. 161, no. 1920, pp. 2162 2169, 2011.

R. Paulraj, G. K. Mani, L. Nallathambi, and J. B. B. Rayappan, ”A room temperature methanol vapour sensor based on polyaniline nanoparticles,” J. Nanosci. Nanotechnol., vol. 16, no. 8, pp. 83158321, 2016.




DOI: http://dx.doi.org/10.12962/j24604682.v18i2.12812

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.