A Review - Does Low Magnitude High-Frequency Vibration (LMHFV)Worth for Fracture Recovery Compared with Pulsed Electromagnetic Field (PEMF) Based Magnetotherapy Method?

Evi Suaebah, Rohim Aminullah Firdaus, Muhimmatul Khoiro

Abstract


The subject of electromagnetic fields is widespread today, including in the medical world. One of them is therapy in fracture healing using the Pulsed Electromagnetic Field (PEMF) method by utilizing a magnetic field. Fracture healing using the magnetic field method utilizes the Helmholtz coil, which is influenced by the current and the amount of turns flowing in the magnetic field. This study conducted a literature study on fracture healing using the PEMF and the LMHFV methods. A comparison of these two methods will show different healing effects. From the studies, we can conclude which way has the most advantage in healing. A faster rehabilitation process will have an impact on reducing implant failure. In contrast, Applying the LMHFV method to bone fractures gives more significant and faster results in bone formation in the damaged part, and the healing process is owned faster. From these two methods, it can be concluded that the LMHFV method provides a similar healing effect than the PEMF method. Applying the LMHFV and PEMF method to bone fractures gives more significant and faster results in bone formation in the damaged part. In addition, the healing process is owned faster.


Keywords


Fractures; Magnetotherapy; LMHFV; PEMF

Full Text:

PDF

References


A. Oryan, S. Monazzah, and A. Bigham-Sadegh, Bone injury and fracture healing biology, Biomed. environment. Sci., vol. 28, no. 1, pp. 5771, 2015, doi: 10.3967/bes2015.006.

A. Krawczy, P. Murawski, E, Korzeniewska, Medical and technical analysis of magnetotherapeutical Devices, IEEE Int. conf. on Modern Electrical and Energy Systems (MEES), 1517 Nov. 2017.

Thomson D.D. Introduction–Mechanisms of fracture healing and pharmacologic control, J. Musculoskelet Neuronal Interact. 2003 Dec;3(4):295-6. PMID: 15758303.

Aaron RK, Boyan B, Ciombor DM, Schwartz Z, Simon BJ, Stimulation of growth factor by electric and electromagnetic fields, Clin. Orthop. Rel. Res. 2004 ;419:30-37.

Bacabac, R. G., Smit, T. H., Van Loon, J. J., et al. Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm?, FASEB J. (2006),20, 858864. doi: 10.1096/fj.05-4966.com.

Shibamoto, A., Ogawa, T., Duyck, J., Vandamme, K., Naert, I., and Sasaki, K. Effect of high-frequency loading and parathyroid hormone administration on peri-implant bone healing and osseointegration, Int. J. Oral Sci (2018). 10:6. doi:10.1038/s41368-018-0009-y.

B. Wade, A review of pulse electromagnetic field mechanism at a cellular level : a rationale for clinical use, American J. of Health Research, 2013; 1(3):51-55.

D.H. Chow, K.S. Leung, L. Qin, et al. Low-magnitude highfrequency vibration (LMHFV) enhances bone remodelling in osteoporotic rat femoral fracture healing, J Orthop Res. 2011 May;29(5):746-52. doi: 10.1002/jor.21303. Epub 2010 Dec 23. PMID: 21437955.

S.K.H. Chow, C.Y. Ho, H.W. Wong, et al. Efficacy of lowmagnitude high-frequency vibration (LMHFV) on musculoskeletal health of participants on wheelchair: a study protocol for a single-blinded randomised controlled study, BMJ Open. 2020 Dec 15;10(12):e038578. doi: 10.1136/ BMJ open-2020-038578. PMID: 33323430; PMCID: PMC7745337.

H.F. Shi, W.H. Cheung, L. Qin, et al. Low-magnitude high-frequency vibration treatment augments fracture healing in ovariectomy-induced osteoporotic bone, Bone, 2010, Volume 46, Issue 5, Pages 1299-1305, ISSN 8756-3282, https://doi.org/10.1016/j.bone.2009.11.028.

X. Ye, Y. Gu, Y. Bai, et al. Does Low-Magnitude High-Frequency Vibration (LMHFV) Worth for Clinical Trial on Dental Implant? A Systematic Review and Meta-Analysis on Animal Studies, Front. Bioeng. Biotechnol. 2021, 9:626892. doi: 10.3389/fbioe.2021.626892.

S.L. Chung, K.S. Leung, and W.H. Cheung, Low-magnitude high-frequency vibration enhances gene expression related to callus formation, mineralization and remodelling during osteoporotic fracture healing in rats, J. Orthop. Res., (2014), 32:1572-1579. https://doi.org/10.1002/jor.22715

A. Ongaro, A. Pellati, L. Bagheri, et al. Pulsed Electromagnetic Fields Stimulate Osteogenic Differentiation in Human Bone Marrow and Adipose Tissue-Derived Mesenchymal Stem Cells, New York: BioelectromagneticWiley Periodical, 2014, pp 426-436.

L. S. Freedman, Pulsating electromagnetic fields in the treatment of delayed and non-union of fractures: results from a district general hospital, Injury. 1985, 16 (5): 315-317. 10.1016/0020-1383(85)90134-2.

T. Lei, Z. Liang, F. Li, et al. Pulsed electromagnetic fields (PEMF) attenuate changes in vertebral bone mass, architecture and strength in ovariectomized mice, 2018 Mar;108:10-19. doi: 10.1016/j.bone.2017.12.008. Epub 2017 Dec 8. PMID: 29229438.

D. Oltean-Dan, G. B. Dogaru, D.Apostu, et al Enhancement of bone consolidation using high-frequency pulsed electromagnetic fields (HF-PEMFs): An experimental study on rats, Bosn. J. of B Med Sciences, (2019). 19(2), 201209. https://doi.org/10.17305/bjbms.2019.3854.

F.Y. Wei, S.K. Chow, K.S. Leung, et al Low-magnitude high-frequency vibration enhanced mesenchymal stem cell recruitment in osteoporotic fracture healing through the SDF-1/CXCR4 pathway, Eur Cell Mater. 2016 May 24;31:341-54. doi: 10.22203/ecm.v031a22. PMID: 27215741.

Q. Zhao , Y. Lu , X. Gan , H. Yu , Correction: Low magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal, PLOS ONE (2017) 12(12): e0189547. https://doi.org/10.1371/journal.pone.0189547

W.R. Thompson, B.V. Keller, M.L. Davis, et al. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon, Orth. J. of Sp. Med. 2015. doi:10.1177/2325967115585783

K. Varani, F. Vincenzi, A. Ravani, et al. Adenosine receptors as a biological pathway for the anti-inflammatory and beneficial effects of low frequency low energy pulsed electromagnetic fields, Mediators Inflamm, 2017;2017:2740963.

J. Zhou, H. He, L. Yang, Effects of pulsed electromagnetic fields on bone mass and Wnt/-catenin signaling pathway in ovariectomized rats, Arch Med Res. 2012 May;43(4):274-82. doi: 10.1016/j.arcmed.2012.06.002. Epub 2012 Jun 13. PMID: 22704852.

Cadossi, et al. Pulsed Electromagnetic Field Stimulation of Bone Healing and Joint Preservation: Cellular Mechanisms of Skeletal Response, JAAOS: Global Research and Reviews: May 2020 Vol. 4 - Issue 5 - p e19.00155 doi: 10.5435/JAAOSGlobal-D-19-00155

M.C. Yoo, Y.J. Cho, K.I. Kim, et al. Pulsed Electromagnetic Fields Treatment for The Early Stage of Osteonecrosis of The Femoral Head, Orthopaedic Proceedings Vol. 86-B, No. SUPPII

B. Chalidis, N. Sachinis, A. Assiotis, G. Maccauro, Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications, Int J Immunopathol Pharmacol. 2011 Jan-Mar;24(1 Suppl 2):17-20. doi: 10.1177/03946320110241S204. PMID: 21669132.

X.S. Qiu, X.G. Li, Y.X Chen, Pulsed electromagnetic field (PEMF): A potential adjuvant treatment for infected nonunion, Med Hypotheses. 2020 Mar;136:109506. doi: 10.1016/j.mehy.2019.109506. Epub 2019 Nov 18. PMID: 31841766.

H.R.Gossling, R.A. Bernstein, J. Abbott, Treatment of ununited tibial fractures: a comparison of surgery and pulsed electromagnetic fields (PEMF), Orthopedics. 1992 Jun;15(6):711-9. doi: 10.3928/0147-7447-19920601-08. PMID: 1608864.

D. Bartolomeo, F. Cavani, A. Pellacani, Pulsed Electro-Magnetic Field (PEMF) Effect on Bone Healing in Animal Models: A Review of Its Efficacy Related to Different Type of Damage, Biology (Basel). 2022 Mar 5;11(3):402. doi: 10.3390/biology11030402. PMID: 35336776; PMCID:

PMC8945722.

C. Daish, R.Blanchard, K. Fox, et al. The Application of Pulsed Electromagnetic Fields (PEMFs) for Bone Fracture Repair: Past and Perspective Findings, Ann Biomed Eng 46, 525542 (2018). https://doi.org/10.1007/s10439-018-1982-1

H.B.Murray, B.A. Pethica, A follow-up study of the in-practice results of pulsed electromagnetic field therapy in the management of nonunion fractures Orthop Res Rev. 2016;8:67-72. https://doi.org/10.2147/ORR.S113756

L. Caliogna, M.Medetti, V. Bina, et al. Pulsed Electromagnetic Fields in Bone Healing: Molecular Pathways and Clinical Applications, Int. J. Mol. Sci. 2021, 22, 7403. https://doi.org/10.3390/ijms22147403

C.G. Lee, C. Park, S. Hwang, et al., Pulsed Electromagnetic Field (PEMF) Treatment Reduces Lipopolysaccharide-Induced Septic Shock in Mice, Int J Mol Sci. 2022 May 18;23(10):5661. doi: 10.3390/ijms23105661. PMID: 35628471; PMCID: PMC9147061.

H.M. Bilgin, F. elik, M. Gem, et al. Effects of local vibration and pulsed electromagnetic field on bone fracture: A comparative study, Bioelectmagnetics, (2017) 38: 339-348. https://doi.org/10.1002/bem.22043

M. Hasmia,. L. Mahmudin, A. Nismayanti, Design of Electromagnetic Field Based Device Device for Fracture Therapy, Gravity, 2021, Vol. 20, No. 1, pp. 1-4.

WHO, Electromagnetic fields and public health, Electromagnetic fields (EMF) Publications and information resources, 2006.

M. H. Oliveira and J. A. Miranda, Biot-Savart-like law in electrostatics, Eur. J. Phys., vol. 22, no. 1, pp. 3138, 2001, DOI: 10.1088/0143-0807/22/1/304.

H.f. Shi, J. Xiong, , Y. Chen, et al. Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: a prospective randomized controlled study, BMC Musculoskelet Disord (2013), 14, 35 https://doi.org/10.1186/1471-2474-14-35

C.C. Lin, R.W. Lin., C.W. Chang, G.J.Wang, K.A. Lai, Singlepulsed electromagnetic field therapy increases osteogenic differentiation through Wnt signaling pathway and sclerostin down regulation, Bioelectromagnetics 2015;36:494-505.

S. Adie, I.A. Harris, et al. Pulsed electromagnetic field stimulation for acute tibial shaft fractures: a multicenter, double-blind, randomized trial, J Bone Joint Surg Am. 2011, 93 (17): 1569-1576. 10.2106/JBJS.J.00869.

B.J. Punt, P.T. den Hoed, W.P.J. Fontijne. Pulsed electromagnetic fields in the treatment of nonunion Eur J Orthop Surg Traumatol. 2008, 18 (2): 127-133. 10.1007/s00590-007-0271-8.

L. Steppe, A. Liedert, A. Ignatius, H. M. Luntzer, Influence of Low-Magnitude High-Frequency Vibration on Bone Cells and Bone Regeneration Frontiers in Bioengineering and Biotechnology, (2020). 8. 10.3389/fbioe.2020.595139.

Z. Fu, H. Xu, W. Bo Pengcheng, C. Long, W. Xinyu, Z. Dong. Protective effects of low-magnitude high-frequency vibration on high glucose-induced osteoblast dysfunction and bone loss in diabetic rats J. of Orthopaedic Surgery and Research. (2021).16. 10.1186/s13018-021-02803-w.

B. Chen, T. Lin, X. Yang, et al. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: the direct role of Wnt/-catenin signaling pathway activation Int. J. Mol. Med. (2016). 38, 15311540. doi: 10.3892/ijmm.2016.2757

J. Gao, H. Gong, X. Huang, et al. Multi-level assessment of fracture calluses in rats subjected to low-magnitude high frequency vibration with different rest periods, Ann. Biomed. Eng. (2016). 44, 24892504. doi: 10.1007/s10439-015-1532-z

E. Lau, S. Al-Dujaili, A. Guenther, et al. Effect of low magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts, Bone (2010). 46, 15081515. doi: 10.1016/j.bone.2010.02.031

K. S. Leung, C. Y. Li, et al. Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderlya cluster-randomized controlled trial, Osteoporos Int. (2014). 25, 17851795. doi: 10.1007/s00198-014-2693-6

Y. Q. Liang, M. C. Qi, J. Xu, et al. Low-magnitude high frequency loading, by whole-body vibration, accelerates early implant osseointegration in ovariectomized rats, Mol. Med. Rep. (2014). 10, 28352842. doi: 10.3892/mmr.2014.2597

S. Judex, X. Lei, D. Han, C. Rubin, Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude, J Biomech. 2007;40(6):1333-9. doi: 10.1016/j.jbiomech.2006.05.014. Epub 2006 Jun 30. PMID: 16814792.

H. M. Luntzer, Lackner I, Liedert A, Fischer V, Ignatius A. Effects of low-magnitude high-frequency vibration on osteoblasts are dependent on estrogen receptor signaling and cytoskeletal remodelling, Biochem Biophys Res Commun. 2018 Sep 18;503(4):2678-2684. doi: 10.1016/j.bbrc.2018.08.023. Epub 2018 Aug 7. PMID: 30093109.

E. Wehrle, A. Liedert, A. Heilmann, et al. The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice, Dis Model Mech 2015; 8 (1): 93104. doi: https://doi.org/10.1242/dmm.018622

S. Chung, W. Cheung, K. Leung Gene expression of osteoporotic fracture healing augmented by low-magnitude high frequency vibration treatment. In ORS Annual Meeting, (2012). San Francisco, CA, Poster No 1404.

K. S. Leung, H. F. Shi, W. H. Cheung, et al. Low-magnitude high-frequency vibration accelerates callus formation, mineralization, and fracture healing in rats, J. Orthop. Res. (2009). 27, 458465.

W. R. Thompson, B. V. Keller, M. L. Dahners,Low-magnitude, high-frequency vibration fails to accelerate ligament healing but stimulates collagen synthesis in the achilles tendon, Orthop. J. Sports Med. (2015). 3:2325967115585783. doi: 10.1177/2325967115585783




DOI: http://dx.doi.org/10.12962/j24604682.v19i1.14213

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.