Spin-Orbit Effect on Thermal Properties of Half-Heusler Alloy FeVSb

Anugrah Azhar

Abstract


FeVSb, a family of Half-Heusler alloy, is categorized as an n-type semiconductor which has a high figure of merit that makes this material to be one of the promising candidates for a thermoelectric device. In FeVSb, Fe and V atoms which have d-orbitals can be considered to have spin-orbit interaction that can affect the electronic structure and thermal properties of this material. In order to investigate how strong the spin-orbit interaction affect this material, we do the first-principles study by implementing the spin-orbit interaction to investigate the change of the band structure and thermal properties of FeVSb. Our results show that the spin-orbit interaction affects the band structure of the material indicated by the energy splitting in the electronic structure which increase the Seebeck coefficient, electrical conductivity, and thermal conductivity but slightly reduce the figure of merit values of FeVSb.

Keywords


Spin-orbit; First-principles; FeVSb; Thermal properties

Full Text:

PDF

References


F. Heusler and Verh, “Ueber magnetische Manganlegierungen,” DPG, vol. 5, p. 220, 1903.

T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem., vol. 39, no. 1, pp. 1–50, 2011.

S. Skaftouros, K. Özdoğan, E. Şaşıoğlu, and I. Galanakis, “Generalized Slater-Pauling rule for the inverse Heusler compounds,” Phys. Rev. B, vol. 87, no. 2, p. 024420, Jan. 2013.

L. Wollmann, A. K. Nayak, S. S. P. Parkin, and C. Felser, “Heusler 4.0: Tunable Materials,” Annu. Rev. Mater. Res., vol. 47, no. 1, pp. 247–270, Jul. 2017.

T. Graf, C. Felser, and S. S. P. Parkin, “Heusler compounds: Applications in spintronics,” in Handbook of Spintronics, Springer Netherlands, 2015, pp. 335–364.

C. Felser, L. Wollmann, S. Chadov, G. H. Fecher, and S. S. P. Parkin, “Basics and prospective of magnetic Heusler compounds,” APL Mater., vol. 3, no. 4, 2015.

V. Srivastava and K. P. Bhatti, “Ferromagnetic shape memory Heusler alloys,” in Solid State Phenomena, vol. 189, Trans Tech Publications Ltd, 2012, pp. 189–208.

T. Klimczuk et al., “Superconductivity in the Heusler family of intermetallics,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 85, no. 17, May 2012.

T. M. Tritt, “Thermoelectric Phenomena, Materials, and Applications,” Annu. Rev. Mater. Res., vol. 41, no. 1, pp. 433–448, Aug. 2011.

L. Huang, Q. Zhang, B. Yuan, X. Lai, X. Yan, and Z. Ren, “Recent progress in half-Heusler thermoelectric materials,” Materials Research Bulletin, vol. 76. Elsevier Ltd, pp. 107–112, 01-Apr-2016.

X. Yan et al., “Enhanced thermoelectric figure of merit of p-type half-heuslers,” Nano Lett., vol. 11, no. 2, pp. 556–560, Feb. 2011.

M. S. Dresselhaus et al., “New directions for low-dimensional thermoelectric materials,” Adv. Mater., vol. 19, no. 8, pp. 1043–1053, 2007.

G. S. Nolas, G. A. Slack, D. T. Morelli, T. M. Tritt, and A. C. Ehrlich, “The effect of rare-earth filling on the lattice thermal conductivity of skutterudites,” J. Appl. Phys., vol. 79, no. 8, pp. 4002–4008, 1996.

Y. Kimura, H. Ueno, and Y. Mishima, “Thermoelectric properties of directionally solidified half-heusler (M 0.5a,M 0.5b )NiSn (M a, M b = Hf, Zr, Ti) alloys,” in Journal of Electronic Materials, 2009, vol. 38, no. 7, pp. 934–939.

L. Huang, Q. Zhang, B. Yuan, X. Lai, X. Yan, and Z. Ren, “Recent progress in half-Heusler thermoelectric materials,” Mater. Res. Bull., vol. 76, pp. 107–112, 2016.

S. Minami, F. Ishii, Y. P. Mizuta, and M. Saito, ”First-principles study on thermoelectric properties of half-Heusler compounds CoMSb (M = Sc, Ti, V, Cr, and Mn),” Applied Physics Letters, vol. 113, no. 3, Jul. 2018.

P. Giannozzi et al., “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys. Condens. Matter, vol. 21, no. 39, p. 395502, Sep. 2009.

P. Giannozzi et al., “Quantum ESPRESSO toward the exascale,” J. Chem. Phys., vol. 152, no. 15, p. 154105, Apr. 2020.

G. K. H. Madsen and D. J. Singh, “BoltzTraP. A code for calculating band-structure dependent quantities,” Comput. Phys. Commun., vol. 175, no. 1, pp. 67–71, Jul. 2006.

E. Gabriel et al., “Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation.”

A. Dal Corso, “Pseudopotentials periodic table: From H to Pu,” Comput. Mater. Sci., vol. 95, pp. 337–350, Dec. 2014.

R. Hasan and S. C. Ur, ”Synthesis of Tin-Doped FeVSb Half Heusler System by Mechanical Alloying and Evaluation of Thermoelectric Performance,” Transactions on Electrical and Electronic Materials, vol. 19, no. 2, pp. 106111, Apr. 2018.

A. El-Khouly et al., ”Transport and thermoelectric properties of Hf-doped FeVSb half-Heusler alloys,” Journal of Alloys and Compounds, vol. 820, p. 153413, Apr. 2020.

N. Van Du et al., “X-site aliovalent substitution decoupled charge and phonon transports in XYZ half-Heusler thermoelectrics,” Acta Mater., vol. 166, pp. 650–657, Mar. 2019.




DOI: http://dx.doi.org/10.12962/j24604682.v17i2.8973

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.