Assessment of 3D-Printed Bolus for Post-Mastectomy Breast Cancer Radiation Therapy
Abstract
The fabricated 3D-printed bolus with 5 mm thick PLA and TPU materials was successfully used to analyze the air gap, relative electron density ( RED), and mass attenuation coefficient values for Post-Mastectomy Breast Cancer Radiation Therapy (PMRT). The 3D bolus was designed using 3D-Slicer Segment Editor software according to the thickness used, then smoothed and finished using Autodesk Meshmixer software, and printed on a 3D Creality printer. The air gap value was then analyzed by taking images from the phantom and 3D-printed bolus on a CT-Scan, then processed on Radiant DICOM, and the air gap value for the two 3D bolus materials was obtained. Analysis of two 3D bolus materials, PLA and TPU, showed that TPU is more suitable for bolus use in postmastectomy breast cancer cases based on its material properties. In addition, TPU is also better in terms of the air gap value because it has a smaller air gap, an RED value that is almost close to that of breast tissue, and better mass attenuation. Therefore, the recommended 3D-printed bolus material is TPU with a thickness of 5 mm as a tissue substitute for postmastectomy breast cancer cases.
Keywords
Full Text:
PDFReferences
Abdullah, K. A., McEntee, M. F., Reed, W. M., & Kench, P. L. (2020). Increasing iterative reconstruction strength at low tube voltage in coronary CT angiography protocols using 3D-printed and Catphan® 500 phantoms. Journal of Applied Clinical Medical Physics, 21(9), 209–214. https://doi.org/10.1002/acm2.12977
Hall, E. J., & Giaccia, A. J. (2006). Radiobiology for the Radiologist. Lippincott Williams & Wilkins. Karl, A. (2016). The production of custom bolus using 3D printers for applications in radiation therapy. https://doi.org/10.26021/8811
Harris, J. R. (2014). Fifty Years of Progress in Radiation Therapy for Breast Cancer. American Society of Clinical Oncology Educational Book, 34, 21–25. https://doi.org/10.14694/edbook_am.2014.34.21
Malone, C., Gill, E., Lott, T., Rogerson, C., Keogh, S., Mousli, M., Carroll, D., Kelly, C., Gaffney, J., & McClean, B. (2022). Evaluation of the quality of fit of flexible bolus material created using 3D printing technology. Journal ofApplied Clinical Medical Physics, October 2021, 1–10. https://doi.org/10.1002/acm2.13490
Lobo, D., Banerjee, S., Srinivas, C., Ravichandran, R., Putha, S. K., Prakash Saxena, P. U., Reddy, S., & Sunny, J. (2020). Influence of air gap under bolus in the dosimetry of a clinical 6 mv photon beam. Journal of Medical Physics, 45(3), 175–181. https://doi.org/10.4103/jmp.JMP_53_20
Banaee, N., Nedaie, H. A., Nosrati, H., Nabavi, M., & Naderi, M. (2013). Dose Measurement of Different Bolus Materials on Surface Dose. Journal of Radioprotection Research, 1(1), 10. https://doi.org/10.12966/jrr.08.02.2013
Linggasari, E., Hariyanto, A. P., Aisyah, S., Jannah, N. H., Rubiyanto, A., Haekal, M., & Endarko. (2022). Evaluation of Dosimetry in Case of Breast Cancer Post Mastectomy with or without Bolus Based on Silicone Rubber Using Intensity Modulated Radiation Therapy. AIP Conference Proceedings in the 11th Internasional Seminar on Paradigm and Innovation on Natural Science and Its Application (Accepted).
Alssabbagh, et al. (2017). Evaluation of nine 3D printing materials as tissue equivalent materials in terms of mass attenuation coefficient and mass density. International Journal of ADVANCED AND APPLIED SCIENCES, 4(9), 168–173. https://doi.org/10.21833/ijaas.2017.09.024
Darmawati, & Suharni. (2012). Implementasi linear accelerator dalam penanganan kasus kanker. Prosiding Pertemuan Dan Presentasi Ilmiah Teknologi Akselerator Dan Aplikasinya, 14(November), 36–47.
Jagsi, R. (2013). Postmastectomy Radiation Therapy: An Overview for the Practicing Surgeon. ISRN Surgery, 2013(September 2013), 1–16. https://doi.org/10.1155/2013/212979
Khan, Faiz M, & Gibbons, J. P. (2014). Khan’s The Physics Of Radiation Therapy.
Podgorsak, E. B. (2005). Radiation Oncology Physics: A Handbook for Teacher and Students. In Vienna: Internastional Atomic Energy Agency (Vol. 52, Issue 20, pp. 6091–6095). https://doi.org/10.1021/jf030837o
S. Izeki, K. Hatakeyama, F. Ebihara, and Y. K. (2001). BOLUS FOR RADIOTHERAPY. 1(12), 1–5.
Van der Walt, M., Crabtree, T., & Albantow, C. (2019). PLA as a suitable 3D printing thermoplastic for use in external beam radiotherapy. Australasian Physical and Engineering Sciences in Medicine, 42(4), 1165–1176. https://doi.org/10.1007/s13246-019-00818-6
Gugliandolo, S. G., Pillai, S. P., Rajendran, S., Vincini, M. G., Pepa, M., Pansini, F., Zaffaroni, M., Marvaso, G., Alterio, D., Vavassori, A., Durante, S., Volpe, S., Cattani, F., Jereczek-Fossa, B. A., Moscatelli, D., & Colosimo, B. M. (2024). 3D-printed boluses for radiotherapy: influence of geometrical and printing parameters on dosimetric characterization and air gap evaluation. Radiological Physics and Technology, 17(2), 347–359. https://doi.org/10.1007/s12194-024-00782-1
Hefdea, A. (2022). ANALISIS DOSIMETRI PADA TERAPI RADIASI MENGGUNAKAN BOLUS CETAK 3D PASIEN KHUSUS KANKER PAYUDARA ANALISIS DOSIMETRI PADA TERAPI RADIASI MENGGUNAKAN BOLUS CETAK 3D PASIEN.
Hasan, W. K., Mahdi, J. T., & Hameed, A. S. (2019). Measurement technique of linear and mass attenuation coefficients of polyester - Bentonite composite as gamma radiation shielding materials. AIP Conference Proceedings, 2144, 1–12. https://doi.org/10.1063/1.5123088
Kouno, T., Kuga, N., Enzaki, M., Yamashita, Y., Kitazato, Y., Shimotabira, H., Jinnouchi, T., Kusuhara, K., & Kawamura, S. (2015). Impact of exposure dose reduction of radiation treatment planning CT using low tube voltage technique. Nihon Hōshasen Gijutsu Gakkai Zasshi, 71(4), 308–315. https://doi.org/10.6009/jjrt.2015_JSRT_71.4.308
DOI: http://dx.doi.org/10.12962/j24604682.v20i2.20671
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.