Blueshift of the optical bandgap in ZnO films by controlling the substrate temperature
Abstract
This study investigates the growth of ZnO thin films using the spray pyrolysis method, focusing on the effect of substrate temperature on the optical bandgap. By varying the deposition temperature from 300 to 500 °C, we aim to understand how temperature influences the optical properties of ZnO films. The films were characterized using X-ray diffraction (XRD) and UV-visible spectroscopy (UV-Vis). At 300 °C, the absorption was lowest, and the optical bandgap increased from 3.20 eV at 300 °C to 3.70 eV at 500 °C. These findings are crucial for developing ZnO materials for optoelectronic applications using an efficient and cost-effective deposition method.
Full Text:
PDFReferences
K. G. Krishna, G. Umadevi, S. Parne, and N. Pothukanuri, “Zinc oxide based gas sensors and their derivatives: a critical review,” J Mater Chem C Mater, vol. 11, no. 12, pp. 3906–3925, 2023, doi: 10.1039/D2TC04690C.
D. Oktapia, E. Nurfani, B. A. Wahjoedi, L. Nulhakim, and G. T. M. Kadja, “Seedless hydrothermal growth of hexagonal prism ZnO for photocatalytic degradation of methylene blue: the effect of pH and post-annealing treatment,” Semicond Sci Technol, vol. 38, no. 10, Oct. 2023, doi: 10.1088/1361-6641/acf397.
E. Nurfani, M. P. Ali, A. Rianjanu, L. Nulhakim, M. S. Anrokhi, and G. T. M. Kadja, “Effect of solution molarity on the optical and photocatalytic properties of sprayed ZnO film,” Mater Chem Phys, vol. 309, p. 128412, 2023, doi: https://doi.org/10.1016/j.matchemphys.2023.128412.
E. Nurfani, L. Antika, M. S. Anrokhi, W. S. Sipahutar, A. Rianjanu, and B. A. Wahjoedi, “UV sensitivity enhancement in ZnO:Cu films through simple post-annealing treatment,” Physica B Condens Matter, vol. 628, Mar. 2022, doi: 10.1016/j.physb.2021.413603.
Z. Chen et al., “A Transparent Electrode Based on Solution-Processed ZnO for Organic Optoelectronic Devices,” Nat Commun, vol. 13, no. 1, p. 4387, 2022, doi: 10.1038/s41467-022-32010-y.
E. Nurfani et al., “Weakening of excitonic screening effects in TixZn1-xO thin films,” Thin Solid Films, vol. 645, pp. 399–404, Jan. 2018, doi: 10.1016/j.tsf.2017.11.015.
E. Nurfani et al., “Defect-induced excitonic recombination in TixZn1-xO thin films grown by DC-unbalanced magnetron sputtering,” Jpn J Appl Phys, vol. 56, p. 112101, 2017, doi: 10.7567/JJAP.56.112101.
R. Kurniawan et al., “Illumination effects on the ferroelectric properties of zinc oxide films grown by DC-unbalanced magnetron sputtering,” Mater Res Express, vol. 4, no. 2, 2017, doi: 10.1088/2053-1591/aa56ce.
F. K. Shan, B. C. Shin, S. W. Jang, and Y. S. Yu, “Substrate effects of ZnO thin films prepared by PLD technique,” J Eur Ceram Soc, vol. 24, no. 6, pp. 1015–1018, 2004, doi: https://doi.org/10.1016/S0955-2219(03)00397-2.
Q. Li et al., “Structural characterization and surface polarity determination of polar ZnO films prepared by MBE,” Appl Nanosci, vol. 13, no. 5, pp. 3197–3204, 2023, doi: 10.1007/s13204-021-01978-2.
M. Hassan, L. Jiaji, P. Lee, and R. S. Rawat, “Catalyst free growth of ZnO thin film nanostructures on Si substrate by thermal evaporation,” Applied Physics A, vol. 127, no. 7, p. 553, 2021, doi: 10.1007/s00339-021-04650-2.
Z. H. Azmi, S. N. Mohd Aris, S. Abubakar, S. Sagadevan, R. Siburian, and S. Paiman, “Effect of Seed Layer on the Growth of Zinc Oxide Nanowires by Chemical Bath Deposition Method,” Coatings, vol. 12, no. 4, 2022, doi: 10.3390/coatings12040474.
M. Patel, S. Mishra, R. Verma, and D. Shikha, “Synthesis of ZnO and CuO nanoparticles via Sol gel method and its characterization by using various technique,” Discov Mater, vol. 2, no. 1, p. 1, 2022, doi: 10.1007/s43939-022-00022-6.
Z. N. Ng, K. Y. Chan, C. Y. Low, S. A. Kamaruddin, and M. Z. Sahdan, “Al and Ga doped ZnO films prepared by a sol-gel spin coating technique,” Ceram Int, vol. 41, pp. S254–S258, 2015, doi: 10.1016/j.ceramint.2015.03.183.
C. E. Caballero-Güereca, M. R. A. Cruz, E. Luévano-Hipólito, and L. M. Torres-Martínez, “Transparent ZnO thin films deposited by dip-coating technique: Analyses of their hydrophobic properties,” Surfaces and Interfaces, vol. 37, p. 102705, 2023, doi: https://doi.org/10.1016/j.surfin.2023.102705.
E. Nurfani, A. Lailani, W. A. P. Kesuma, M. S. Anrokhi, G. T. M. Kadja, and M. Rozana, “UV sensitivity enhancement in Fe-doped ZnO films grown by ultrafast spray pyrolysis,” Opt Mater (Amst), vol. 112, no. November 2020, p. 110768, 2021, doi: 10.1016/j.optmat.2020.110768.
E. Nurfani et al., “Enhanced UV sensing of ZnO films by Cu doping,” Opt Mater (Amst), vol. 114, p. 110973, 2021, doi: 10.1016/j.optmat.2021.110973.
V. Mishra, M. K. Warshi, A. Sati, A. Kumar, and V. Mishra, “Materials Science in Semiconductor Processing Di ff use re fl ectance spectroscopy : An e ff ective tool to probe the defect states in wide band gap semiconducting materials,” Mater Sci Semicond Process, vol. 86, no. June, pp. 151–156, 2018, doi: 10.1016/j.mssp.2018.06.025.
P. Kubelka and F. Munk, “An Article on Optics of Paint Layers,” Z. Tech. Phys, vol. 12.593-601, pp. 259–274, 1931.
J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater Res Bull, vol. 3, no. 1, pp. 37–46, 1968.
E. Nurfani, G. T. M. Kadja, M. A. K. Purbayanto, and Y. Darma, “The role of substrate temperature on defects, electronic transitions, and dark current behavior of ZnO films fabricated by spray technique,” Mater Chem Phys, vol. 239, no. June 2019, p. 122065, 2020, doi: 10.1016/j.matchemphys.2019.122065.
Y. Hwang, S. Park, M. Kang, and Y. Um, “Effects of temperature-induced stress on the structural , electrical , and optical properties of ZnO : Ga thin fi lms grown on Si substrates,” Current Applied Physics, vol. 14, pp. S23–S28, 2014, doi: 10.1016/j.cap.2013.11.048.
S. T. Tan et al., “Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition,” J Appl Phys, vol. 98, p. 013505, 2005, doi: 10.1063/1.1940137.
A. Di Trolio et al., “Blueshift of optical band gap in c-axis oriented and conducting Al-doped ZnO thin films,” J Appl Phys, vol. 105, p. 113109, 2009, doi: 10.1063/1.3139275.
J.-W. Jeona et al., “Effect of annealing temperature on optical band-gap of amorphous indium zinc oxide film Related papers,” J Alloys Compd, vol. 509, pp. 10062– 10065 Contents, 2011, doi: 10.1016/j.jallcom.2011.08.033.
B. Kumar, H. Gong, and R. Akkipeddi, “High mobility undoped amorphous indium zinc oxide transparent thin films,” J Appl Phys, vol. 98, no. 2005, p. 073703, 2005, doi: 10.1063/1.2060957.
A. Jain, P. Sagar, and R. M. Mehra, “Band gap widening and narrowing in moderately and heavily doped n-ZnO films,” Solid State Electron, vol. 50, pp. 1420–1424, 2006, doi: 10.1016/j.sse.2006.07.001.
DOI: http://dx.doi.org/10.12962/j24604682.v21i1.20160
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.