Synthesis of Bio-Silver Nanoparticles using Leaf Extract of Cymbopogon nardus and Examination of Their Physical and Anti-Bacterial Properties

Philipus J Patty, Synodalia C Wattimena, Veince B Silahooy

Abstract


In this study, antibacterial activities of bio-silver nanoparticles synthesized using leaf extract of Cymbopogon nardus against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) were assessed. For this purpose, the disc diffusion and spectrophotometric methods were used. Before the antibacterial assessment, the physical properties of the silver nanoparticles were characterized. UV-VIS spectroscopy was used to determine the wavelength of the localized surface plasmon resonance, while FTIR was used to identify the functional group on the particles. For the shape and size distribution of the particles, TEM was used. The UV-VIS spectrum shows 435 nm as the wavelength of localized surface plasmon resonance while the FTIR spectrum indicates the presence of the extract on the surface of the particles, suggesting the action of extracts as the reducing as well as capping agents. Most of these nanoparticles observed are spherical, and their diameters vary from 7.0 nm to 31.0 nm with the mean diameter calculated to be 15.7±4.60 nm. Results from both diffusion disc and spectrophotometric methods show that the silver nanoparticles can inhibit the growth of both gram-positive (S. aureus) and gram-negative (E. coli) bacteria. In the diffusion disc method, the diameter of the inhibition zone was found to be 0,83 ± 0,03 cm for S. aureus and 0,63 ± 0,03) cm for E. coli. Statistical analysis shows no significant difference between the two. In the spectrophotometric method, the optical density of bacteria without the nanoparticles increases, while it levels off when the nanoparticles are applied. The significant difference between the two occurs 6 hours after introducing silver nanoparticles to E. coli and S. aureus. The results show that the silver nanoparticles inhibit the growth of both S. aureus and E. coli equally

Keywords


Antibacterial Activities, Cymbopogon nardus, Bio-Silver Nanoparticles, Surface Plasmon Resonance

Full Text:

PDF

References


Li Xu, Yi-Yi Wang, Jie Huang, Chun-Yuan Chen, Zhen-Xing Wang, and Hui Xie, ”Silver nanoparticles: Synthesis, medical applications and biosafety,” Theranostics, vol. 10, pp. 8996–9031, 2020. doi: 10.7150/thno.45413.

Swati Gajbhiye and Satish Sakharwade, ”Silver Nanoparticles in Cosmetics,” Journal of Cosmetics, Dermatological Sciences and Applications, vol. 6, pp. 48-53, 2016. http://dx.doi. org/10. 4236/jcdsa.2016.61007.

Ana Isabel Ribeiro, Vasyl Shvalya, Uros Cvelbar, Renata Silva, Rita Marques-Oliveira, Fernando Remiao, Helena P. Felgueiras, Jorge Padrao, and Andrea Zille, ”Stabilization of Silver Nanoparticles on Polyester Fabric Using Organo-Matrices for Controlled Antimicrobial Performance,” Polymers, vol. 14, p. 1138, 2022. doi: 10.3390/polym14061138.

Yuanyuan Yu, Zhongbo Zhou, Guocheng Huang, Hong Cheng, Le Han, Shanshan Zhao, Yucheng Chen, and Fangang Meng, ”Purifying water with silver nanoparticles (AgNPs)-incorporated membranes: Recent advancements and critical challenges,” Water Research, vol. 222, p. 118901, 2022. doi.org/10.1016/j.watres.2022.118901.

Abderrhmane Bouafia, Salah Eddine Laouini, Abdelaal S. A. Ahmed, Alexander V. Soldatov, Hamed Algarni, Kwok Feng Chong, and Gomaa A. M. Ali, ”The recent progress on silver nanoparticles: Synthesis and electronic applications,” Nanomaterials (Basel), vol. 11, p. 2318, 2021. doi: 10.3390/nano11092318

Kevin Varghese Alex, Parthiban Tamil Pavai, Radhasaran Rugmini, Madavi Shiva Prasad, Koppole Kamakshi, and Koppole Chandra Sekhar, “Green synthesized Ag nanoparticles for bio-sensing and photocatalytic applications,” ACS Omega, vol. 5, pp. 13123-13129, 2020. doi: 10.1021/acsomega.0c01136.

R.J. Matyas, P. Slobodian, L. Munster, R. Olejnik, and P. Urbanek, ”Microstrip antenna from silver nanoparticles printed on a flexible polymer substrate,” Materialstoday, vol. 4, pp. 5030-5038, 2017. doi.org/10.1016/j.matpr.2017.04.110.

S. Iravani, H. Korbekandi, S.V. Mirmohammadi, and B. Zolfaghari, ”Synthesis of silver nano-particles: chemical, physical and biological methods,” Research in Pharmaceutical Sciences, vol. 9, pp. 385 – 406, 2014.

Synodalia C. Wattimena, Doan R. Silooy, and Philipus J. Patty, ”Characterization of green silver nanoparticles of Graptophyllum pictum leaf extract: from the localized surface plasmon resonance to the antimicrobial activity,” Journal of Physics: Conference Series, vol. 1943, p. 012065, 2021. DOI 10.1088/1742-6596/1943/1/012065.

Synodalia C. Wattimena, A. A. Reniwuryaan, Philipus J. Patty, ”Physical-chemical and antibacterial properties of green-synthesized silver nanoparticles mediated by leaf extract of Syzygium aromaticum L,” Journal of Physics: Conference Series, vol. 1825, p. 012090, 2021. DOI 10.1088/1742-6596/1825/1/012090.

Synodalia C. Wattimena and Philipus J. Patty, “Antibacterial properties of silver nanoparticles synthesized using leaf extract of Anredera cordifolia as a reducing agent,” World Journal of Pharmacy and Pharmaceutical Sciences, vol. 6, pp. 1673-1683, 2017.

Synodalia C Wattimena, Violin Ririmasse, Amos Killay, and Philipus J Patty, “Kinetics of Formation and Characterization of Green Silver Nanoparticles of Ficus variegata Leaf Extract,” Jurnal Kimia Sains dan Aplikasi, vol. 25, pp. 34–40, 2022. doi.org/10.14710/ jksa.25.1.34-40.

Synodalia C. Wattimena and Philipus J. Patty, “Synthesis of silver nanoparticles mediated by stem extract of Anredera cordifolia and study of their antimicrobial properties,” The Pharmaceutical and Chemical Journal, vol. 4, pp. 129-136, 2017.

Synodalia C. Wattimena, Desy A. Ayuningrum, Leonita Y. Latuasan, Efraim Samson, and Philipus J. Patty, ”Properties of bio-silver nanoparticles mediated by tuber and leaf extracts of Manihot esculenta,” Biosaintifika, vol. 14, pp . 271-278, 2022. doi.org/10.15294/biosaintifika.v14i2. 37667.

Robert Hutagalung, Rustam M. Samual, Philipus J. Patty, and Synodalia C. Wattimena, “Green synthesis of silver nanoparticles using seed extract of Sauropus androgynus and their application as an anti bacterial agent,” World Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, pp 1351-1360, 2018.

Murugan Elangovan, Dhayalan Ramachandran, and Krishnan Rajesh, ”Green synthesis of silver nanoparticles using flower extract of Hemigraphis colorata as reducing agent and its biological activity,” Letter in Applied NanoBioScience, vol. 10, pp. 2646-2654, 2021. doi.org/10.33263/ LIANBS104.26462654.

Maria Malik, Muhammad Aamir Iqbal, Mariam Malik, Muhammad Akram Raza, Wajeehah Shahid, Jeong Ryeol Choi, and Phuong V. Pham, ”Biosynthesis and characterizations of silver nanoparticles from Annona squamosa leaf and fruit extracts for size-dependent biomedical applications,” Nanomaterials (Basel), vol. 12, p. 616, 2022. doi: 10.3390/nano12040616.

Mohd Fazrullah Innsan M.F., Shahril M.H., Samihah M.S., Asma O.S., Radzi S.M., Abd Jalil A.K., and Hanina M.N., ”Pharmacodynamic properties of essential oils from Cymbopogon species,” African Journal of Pharmacy and Pharmacology, vol. 5, pp. 2676-2679, 2011. DOI:10. 5897/AJPP11.693.

Luciani G. De Toledo, Matheus A, Ramos, Larissa Spósito, Elza M. Castilho, Fernando R. Pavan, Erica O. Lopes, Guilherme J. Zocolo, Francisca A. Silva, Tigressa H. Soares, Andre G. Dos Santos, Tais M. Bauab, and Margarete T. De Almeida, “Essential oil of Cymbopogon nardus (L.) Rendle: A strategy to combat fungal infections caused by Candida Species,” International Journal of Molecular Sciences, vol. 17, p. 1252, 2016. doi.org/10.3390/ijms17081252.

Koba Koffi, Komla Sanda, Catherine Guyon, Christine D. Raynaud, Jean P. Chaumont, and Laurence Nicod, “In vitro cytotoxic activity of Cymbopogon citratus L. and Cymbopogon nardus L. essential oils from Togo,” Bangladesh Journal of Pharmacology, vol. 4, pp. 29-34, 2009. DOI:10.3329/bjp.v4i1.1040.

Kazuhiko Nakahara, Najeeb S. Alzoreky, TadashiYoshihashi, Huong T. T. Nguyen, and Gassinee Trakoontivakorn, ”Chemical composition and antifungal activity of essential oil from Cymbopogon nardus (Citronella Grass),” Japan Agricultural Research. Quarterly, vol. 37, pp. 249–252, 2003. doi.org/10.6090/jarq.37.249.

J. C. Lopez-Romero, H. Gonzalez-Rios, A. Borges, and M. Simoes, “Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus,” Evidence-Based Complementary And Alternative Medicine, vol. 2015, Article ID 795435, 2015. doi.org/10.1155/2015/795435.

Hai Liu, Ting Lian, Yang Liu, Yingling Hong, Daohua Sun, and Qingbiao Li, “Plant-mediated synthesis of Au nanoparticles: Separation and identification of active biomolecule in the water extract of Cacumen platycladi,” Industrial & Engineering Chemistry Research, vol. 56, pp. 5262-5270, 2017. doi.org/10.1021/acs.iecr.7b00064.

Eleonora Petryayeva and Ulrich J Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review,” Analytica Chimica Acta, vol. 706, pp. 8-24, 2011. doi: 10.1016/j.aca.2011.08.020.

Tao Huang and Xiao-Hong Nancy Xu, “Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy,” Journal of Materials Chemistry, vol. 20, pp. 9867-9876, 2010. Doi.org/10.1039/C0JM01990A.

Synodalia C. Wattimena and Philipus J. Patty, Bio-Nanopartikel Perak Sains and Aplikasi (Bio-Silver Nanoparticles Science and Application), 1st Edition. Yogyakarta: Deepublish, 2023.

K. Kalishwaralal, S. Barathmanikanth, S. R. K. Pandian, V. Deepak, and S. Gurunathan, “Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis,” Colloid Surf. B: Biointerfaces, vol. 79, pp. 340-344, 2010. doi: 10.1016/j.colsurfb. 2010.04.014.

Q. L. Feng , J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim, “A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus,” J. Biomed. Mater. Res., vol. 52, pp. 662-668, 2000. doi: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3.

Linlin Wang , Chen Hu , and Longquan Shao , “The antimicrobial activity of nanoparticles: present situation and prospects for the future,” Int. J. Nanomedicine, vol. 12, pp. 1227-1249, 2017. doi: 10.2147/IJN.S121956.

Tri Puji Lestari, Fitia Abbas Tahlib, Johan Sukweenadhi, Kartini, Christina Avanti, “Physical characteristic and antibacterial activity of silver nanoparticles from green synthesis using ethanol extracts of Phaleria macrocarpa (Scheff.) Boerl leaves,” Trad. Med. J., vol. 24, pp. 16-21, 2019. https://doi.org/10.22146/mot.37956.

H.M.M. Ibrahim, “Green synthesis and characterization of silver nanoparticles using banana peel extract and their anti microbial activity against representative microorganisms,” J. Radiat. Res. Appl. Sci., vol. 8, pp. 265-275, 2015. doi.org/10.1016/ j.jrras.2015.01.007.

S. Rajesgkumar, “Synthesis of silver nanoparticles using fresh bark of Pongamia pinnata and characterization of its antibacterial activity against gram-positive and gram-negative pathogens,” Resour. Technol., vol. 2, pp. 30-35, 2016. https://doi.org/10.1016/j.reffit. 2016.06.003.

Akhil Rautela, Jyoti Rani, and Mira Debnath, “Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms,” J. Anal. Svi. Technol., vol. 10, p. 5, 2019. doi.org/ 10.1186/s40543-018-0163-z

Majid Sharifi-Rad, Pawel Pohl, Francesco Epifano, and Jose M. Alvarez-Suarez, “Green synthesis of silver nanoparticles using Astragalus tribuloide Delile root extract: Characterization, antioxidant, antibacterial, and anti-Inflammatory Activities,” Nanomaterials vol. 10, p. 2383, 2020. doi: 10.3390/nano10122383

K.M. Reddy, F. Kevin, B. Jason, G.W. Denise, H. Cory, and P. Alex, “Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems,” J. Appl. Phys. Lett., vol. 90, pp. 1-3, 2007. doi:10.1063/1.2742324

Z.E. Karvani and P. Chehrazi, “Antibacterial activity of ZnO nanoparticle on gram-positive and gram-negative bacteria,” Afr. J. Microbiol. Res., vol. 5, pp. 1368-1373, 2011. doi:0.5897/ AJMR10.159




DOI: http://dx.doi.org/10.12962%2Fj24604682.v21i2.19847

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.