The Effect of Micro-Sized Carbon Material Mass Variation from Coconut Shell Leftovers Reinforced with Filter Paper towards Fe Filtration of Mataram Canal Water

Nur Baeity Andriyani, Buky Wahyu Pratama, Irnawati Widya Hastuti, Wipsar Sunu Brams Dwandaru

Abstract


The aim of this research is to determine the effect of micro-sized carbon material mass variation from coconut shell leftovers or wastes reinforced with filter paper towards Fe filtration of Mataram canal water. Preparation
and synthesis of the micro-sized carbon material is conducted via liquid sonication exfoliation (LSE) method using two main equipments, i.e.: a blender and a self-custom made piezoelectric-based ultrasonication apparatus, and then incorporated into a simple filtration apparatus. UV-Vis spectroscopy characterization is done on the micro-sized carbon material solution, while atomic absorption spectroscopy (AAS) is done on samples
of Mataram canal water before and after Fe filtration with mass variation of the micro-sized carbon material. The UV-Vis results show that increasing the mass of the micro-sized carbon material increases the absorbance
values at the same wavelength. The AAS results confirm that the greater the mass of the micro-sized carbon material the smaller the Fe content inside the water samples after filtration. The lowest Fe content of 0.016 ppm is obtained for 3 grams of the micro-sized carbon material.

Keywords


micro-sized carbon material, coconut shell, Fe filtration, Mataram canal

Full Text:

PDF

References


P.H. Gleick, Ecological Applications, 8(3) 571-579 (1998).

K.J. Pieper, M. Tang, and M. A. Edwards, Environ. Sci. Technol., 51(4), 2007-2014 (2017).DOI: 10.1021/acs.est.6b04034

P.R. Costa, J.C. Martins, and P. Chainho, Impact of Invasions on Water Quality in Marine and Freshwater Environments in Impact of Biological Invasions on Ecosystem Services, Eds. M. Villa and P. E. Hulme, 221-234, Springer (2017). DOI: 10.1007/978- 3-319-45121-3-14.

A. Alrajhi, S. Beecham, and A. Hassanli, Agricultural Water Management, 182, 117-125 (2017). DOI: 10.1016/j.agwat.2016.12.011.

B.-M. Yang, W.-L. Lai, Y.-M. Chang, Y.-S. Liang, and C.-M. Kao, Journal of Cleaner Production, 143, 1313-1326 (2017). DOI: 10.1016/j.jclepro.2016.11.105.

D. Couillard, Water Research, 28(6), 1261-1274 (1994). DOI: 10.1016/0043-1354(94)90291-7.

I. Gehrke, A. Geiser, and A. Somborn-Schulz, Nanotechnol. Sci. Appl., 8, 1-17 (2015). DOI: 10.2147/NSA.S43773.

K. Mizuta, T. Matsumoto, Y. Hatate, K. Nishihara, and T. Nakanishi, Bioresource Technology, 95(3), 255-257 (2004). DOI: 10.1016/j.biortech.2004.02.015.

A. Das, D. Sen, S. Mazumder, and A. K. Ghosh, AIP Conference Proceedings, 1832, 050094 (2017). DOI: 10.1063/1.4980327.

J.C. Moreno-Pirajan and L. Giraldo, E-Journal of Chemistry, 9(2), 926-937 (2012).




DOI: http://dx.doi.org/10.12962/j24604682.v13i3.2840

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.