Pembuatan Lapisan Tipis Oksida Grafena Tereduksi sebagai Material Elektroda Sistem Kapasitor dan Karakterisasinya
Abstract
Grafena adalah material karbon dua dimensi dan memiliki sifat mekanik, listrik, dan termal yang unggul. Grafena memiliki potensi sebagai bahan elektroda sistem penyimpanan energy seperti superkapasitor. Dalam
penelitian digunakan bahan reduced graphene oxide (RGO) yang diperoleh melalui proses reduksi secara termal bahan graphene oxide (GO) komersial. Lapisan tipis GO di atas substrat ITO-glass dibuat menggunakan metode Spincoating pada kecepatan 1000 rpm selama 60 sekon. Lapisan tipis RGO diperoleh dengan cara pemanasan lapisan tipis GO pada temperatur 200C selama 1 jam. Sistem kapasitor menggunakan anoda dan katoda dari bahan RGO di atas dan untuk medium elektrolit digunakan larutan H2SO4 1 Molar. Karakteristik sistem kapasitor tersebut diamati melalui pengukuran cyclic voltammetry (CV) secara potensio-static pada rentang tegangan -0,2-0,8 volt dengan scan rate 125 mV/s. Juga dilakukan karakteristik charge-discharge melalui pengukuran pengisian-pengosongan muatan secara galvano-static. Karakteristik sifat penyimpanan muatan secara kapasitip diperlihatkan dengan adanya pola histerisis pada hasil kurva CV. Hasil pengukuran charge-discharge memperlihatkan pola kurva segitiga yang mengindikasikan adanya proses penyimpanan muatan. Nilai kapasitansi spesifik maksimum elektroda RGO adalah 1,54 × 10−4/massa F/g pada kondisi arus pengosongan 0,7 μA.
ABSTRACT
Graphene is a two-dimensional carbon material and has superior mechanical, electrical, and thermal properties. Graphene has potential as an electrode material for energy storage systems such as supercapacitors. In the study used reduced graphene oxide (RGO) material obtained through the thermal reduction process of commercial graphene oxide (GO) material. The GO thin layer on the ITO-glass substrate was made using Spin coating method at 1000 rpm for 60 seconds. The RGO thin layer was obtained by heating the GO thin film at a temperature of 200C for 1 hour. The capacitor system uses the anode and cathode of the above RGO material and for the electrolyte medium, a 1 Molar H2SO4 solution is used. The characteristic of the capacitor system was observed by potential-static cyclic voltammetry (CV) measurements in the voltage range of -0.2-0.8 volts with a scan rate of 125 mV/s. Also performed the characteristics of charge-discharge through the measurement of charge-discharging charge in galvanostatic. Characteristic properties of energy storage are shown in the presence of a pattern of hysteresis on the CV curve. The result of the charge-discharge measurement shows a triangle curve pattern indicating the existence of a storage process of the charge. The maximum specific capacitance value of RGO electrode is 1.54 × 10−4 / mass F/g at 0.7 μA discharge current condition.
Keywords
Full Text:
PDFReferences
A.K. Shukla, Resonance, 6(7), 72-81 (2001).
A.G. Pandolfo and A.F. Hollenkamp, J. Power Sources, 157(1), 11-27 (2006).
X.S. Zhao, L.L. Zhang, R. Zhou, and X.S. Zhao, J. Mater. Chem., 20, 5983-5992 (2010).
E. Frackowiak, Carbon N. Y., 39, 937-950 (2001).
R. Ko and M. Carlen, Electrochim. Acta, 45, 2483-2498 (2000).
K. S. Novoselov, A. K. Geim, S. V Morozov, and D. Jiang, Science, 306, 666-669 (2004).
J. Yang and S. Gunasekaran, Carbon N. Y., 51, 36-44 (2012).
M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Am. Chem. Soc., 8(10), 3498-3502 (2008).
S. Pei and H. Cheng, Carbon N. Y., 11, 1-19 (2011).
S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol., vol. 4, pp. 217-224, 2009.
H. Choi, S. Jung, J. Seo, and D.Wook, Nano Energy, 1(4), 534- 551 (2012).
R. Farma, et al., Int. J. Electrochem. Sci., 8, 257-273 (2013).
DOI: http://dx.doi.org/10.12962/j24604682.v13i3.2841
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.