Non Linear EVM based on Support Vector Regression Growth Model for Predicting Project Completion Time
Abstract
Keywords
Full Text:
PDFReferences
Cheng, M.-Y., Hoang, D.-N., Roy, A. F., & Wu, Y.-W. (2012). A Novel time-depended evolutionary fuzzy SVM inference model for estimating construction project at completion. Engineering Application of Artificial Intelligence, 744 - 752.
Cheng, M.-Y., Peng, H.-S., Wu, Y.-W., & Chen, T.-L. (2010). Estimate at Completion for construction projects using Evolutionary Support Vector Machine Inference Model. Automation in Construction, 19, 619-629.
Drucker, H., Burges, C., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support Vector Regression Machine. Advances in Neural Information Processing Systems 9: Proceedings of the 1996 Conference (pp. 155 - 161). MIT Press.
Gunn, S. (1998). Support Vector Machines for Classification and Regression. Southampton, UK: University of Southampton.
Hamel, L. (2009). Knowledge discovery with support vector machines. Hoboken, New Jersey: John Wiley & Sons, Inc.
Huang, Y. (2009). Advances in Artificial Neural Networks – Methodological Development adn Application. Algorithms 2, 973-1007.
Lipke, W. (2003). Schedule is different. The Measurable News, 31-34.
Narbaev, T., & De Marco, A. (2013). An Earned Schedule-based regression model to improve cost estimate at completion. Internataional Journal of Project Management, 1 - 12.
Narbaev, T., & De Marco, A. (2014). Combination of Growth Model and Earned Schedule to Forecast Project Cost at Completion. Journal of Construction Engineering and Management.
Peško, I., MuIenski, V., Šešlija, M., Radovic, N., Vujkov, A., Bibic, D., & Krklješ, M. (2017). Estimation of Costs and Durations of Construction of Urban Roads Using ANN and SVM. Complexity.
Pingping, X., Bin , L., Haihui , Z., & Hu , J. (2019). Optimization and control of the light environment for greenhouse crop production. Scientific Reports.
Prieto, A., Prieto, B., Ortigosa, E. M., Ros, E., & Pelayo, F. (2016). Neural networks : an overview of early research, current frameworks, and new challenge. Neurocomputing, 242-268.
Schölkopf, B., & Smola, A. (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. London, England: The Massachusetts Institute of Technology.
Vanhoucke, M. (2012). Measuring the efficiency of project control using fictitious and empirical project data. International Journal of Project Management, 30, 252-263.
Vanhoucke, M. (2014). Integrated Project Management and Control. Switzerland: Springer International Publishing.
Vanhoucke, M. (2019). Tolerance limits for project control: An overview of different approaches. Computers & Industrial Engineering 127, 467 - 479.
Vanhoucke, M., & Wauters, M. (2014). Support Vector Machine Regression for project control forecasting. Automation in Construction, 47, 92-106.
Vanhoucke, M., & Wauters, M. (2016). A comparative study of Artificial Intelligence methods for project duration forecasting. Expert Systems With Applications 46, 249 - 261.
Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.
Warburton, R., & Cioffi, D. (2016). Estimating a project's earned and final duration. International Journal of Project Management, 1493 - 1504.
Warburton, R., De Marco, A., & Sciuto, F. (2017). Earned schedule formulation using nonlinear cost etimates at completion. Journal of Modern Project Management, 75 - 81.
Willems, L., & Vanhoucke, M. (2015). Classification of articles and journal on project control and earned value management. International Journal of Project Management , 1610 - 1634.
DOI: http://dx.doi.org/10.12962/j24433527.v15i1.11268
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.