Unified Discrete Wavelet Transform with Ridge Regression and Principal Component Regression to Predict Concentration of Gingerol Compound in Ginger Crop

Sony Sunaryo

Abstract


Multivariate calibration model can be used as an alternative method to predict the concentration of a gingerol compound. The prediction usually are carried out chemically through a long and expensive process using High Performance Liquid Chromatography (HPLC) measurement method. Since the number of samples (n) are less than of the number of independent variables (p), and between the independent variables are correlated, so the development of model using conventional regression is not valid. The combination of Discrete Wavelete Transform (DWT) with Ridge Regression and Principal Component Regression have been adopted in this paper to predict concentration of gingerol, and it showed a promising result.

Keywords


Calibration Model; Wavelet; Partial Least Square; Gingerol

Full Text:

PDF

References


Naes, T., Isaksoon, T., Fearn, T., Davies, “A User Friendly Guide to Multivariate Calibration and Classification,” NIR publications, UK. 2002.

Martens, H., Naes, T., Multivariate Calibration. John Willey & Sons. Chichester, England. 1989.

Sunaryo, S., Notodiputro, K.A., ”Penerapan Metode Transformasi Wavelet Diskret untuk Menentukan Kadar Senyawa Kurkuminoid pada Rimpang Temulawak,” Prosiding Seminar Nasional Matematika 2005, halaman 100-107, Jurusan Matematika UNS, Surakarta , 7 Mei 2005.

Sunaryo, S., ”Model Kalibrasi dengan Transformasi Wavelet sebagai Metode Pra-Pemrosesan,” Disertasi Program Pascasarjana, Institut Pertanian Bogor. 2006.

Sunaryo, S., Notodiputro, K.A., “Penerapan Metode Transformasi Wavelet Diskret untuk Menentukan Kadar Senyawa Gingerol pada Rimpang Jahe.” Statistika - Forum Teori dan Aplikasi Statistika 4: 181-185 , Jurusan Statistika FMIPA UNISBA. 2004.

Nason, G.P., Silverman, B.W., “The discrete wavelet transform in S.” J.comp graph. Stat. 3: 163-191. 1994.

Nason, G.P. (1998), Wavethresh 3 software. Department of Mathematics, University of Bristol, UK. Available [http://www.stats.bris.ac.uk/~wavethresh] (tanggal akses : 12 April 2007).

Brown, P.J., Fearn, T., Vanucci, M., “Bayesian Wavelet Regression on Curves with Application to a Spectroscopic Calibration Problem.” J Amer Statist Assoc 96: 398-408. 2001.

McNulty, S.C., Ganapati, M., “Application of Wavelet Analysis Determining Glucose Concentration of Aqueous Solution Using NIR Spectroscopy.” Hewlett-Packard comp. 1998.

Yi-yu, C., Chen M.J., “A New Computing Multivariate Spectral Analysis Method Based on Wavelet Transform.” Journal of Zhejiang University Science 1: 15-19. 2000.

Shao, X., Yadong, Z., “Determining of Chlorogenic Acid in Plant Samples by Using Near-Infrared Spectrum with Wavelet Transform Preprocessing.” Analytical Sciences 20. 2004.

Vidacovic, B., Meuller, P., ”Wavelets for Kids. A Tutorial Introduction”, AMS Subject Classification, Duke University 1991.

Percival, D.B. (2005), Wavelets : Data Analysis, Algorithms

and Theory. University Washington. Available [http://www.ms.washington.edu/~s530/] (tanggal akses : 18 april 2005).




DOI: http://dx.doi.org/10.12962/j20882033.v19i3.148

Refbacks

  • There are currently no refbacks.


Creative Commons License

IPTEK Journal of Science and Technology by Lembaga Penelitian dan Pengabdian kepada Masyarakat, ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/jts.