Adversarial Training For Robust Defense In Cnn Models For Lung And Colon Histopathological Images
Abstract
Keywords
Full Text:
FULL TEXTReferences
Kurishima K, Miyazaki K, Watanabe H, Shiozawa T, Ishikawa H, Satoh H, et al. Lung cancer patients with synchronous
colon cancer. Molecular and Clinical Oncology 2017;8:137–140. https://www.spandidos-publications.com/10.3892/mco.
1471.
IARC. Global Cancer Observatory (GLOBOCAN). International Agency for Research Cancer 2019;http://gco.iarc.fr/
today/home.
Dr dr Terawan Agus Putranto SR. Profil Kesehatan Indonesia Tahun 2019. Kementerian Kesehatan Republik Indonesia
;file:///C:/Users/DRPM-ITS/Downloads/Profil-Kesehatan-Indonesia-2019.pdf.
Chehade AH, Abdallah N, Marion JM, Oueidat M, Chauvet P. Lung and colon cancer classification using medical
imaging: a feature engineering approach. Scientific Paper 2022;45:729–746. https://link.springer.com/article/10.1007/
s13246-022-01139-x.
Hatuwal BK, Thapa HC. Lung Cancer Detection Using Convolutional Neural Network on Histopathological Images. International
Journal of Computer Trends and Technology 2019;68:21–24. https://ijcttjournal.org/archives/ijctt-v68i10p104.
Ma X, Niu Y, Gu L, Wang Y, Zhao Y, Bailey J, et al. Lung Cancer Detection Using Convolutional Neural Network on
Histopathological Images. Pattern Recognition 2021;110:107332. https://www.scopus.com/authid/detail.uri?authorId=
Diyasa IGSM,Wahid RR, Amiruddin BP. Lung Cancer Detection Using Convolutional Neural Network on Histopathological
Images. 2021 International Conference on e-Health and Bioengineering (EHB) 2021;p. 1–4. https://ieeexplore.ieee.
org/document/9657589.
Sipola T, Puuska S, Kokkonen T. Model Fooling Attacks Against Medical Imaging: A Short Survey.
International Conference on e-Health and Bioengineering (EHB) 2021;46:215–224. https://isij.eu/article/
model-fooling-attacks-against-medical-imaging-short-survey.
Thangaraju A, Merkel C. Exploring Adversarial Attacks and Defenses in Deep Learning. 2022 IEEE International
Conference on Electronics, Computing and Communication Technologies (CONECCT) 2022;https://ieeexplore.ieee.org/
document/9865841.
Wei C, Sun R, Li P, Wei J. Analysis of the no-sign adversarial attack on the covid chest x-ray classification. 2022 IEEE
International Conference on Electronics, Computing and Communication Technologies (CONECCT) 2022;p. 73–79. https:
//ieeexplore.ieee.org/document/9887371.
Kaviani S, Han K, Sohn J. Analysis of the no-sign adversarial attack on the covid chest x-ray classification. Expert Systems
with Applications 2022;198:116815. https://ieeexplore.ieee.org/document/9887371.
Lal S, Rehman SU, Shah JH, Meraj T, Rauf HT, Damaševičius R, et al. Adversarial Attack and Defence through Adversarial
Training and Feature Fusion for Diabetic Retinopathy Recognition. MDPI 2021;21:3922. https://www.mdpi.com/
-8220/21/11/3922.
Shi X, Peng Y, Chen Q, Keenan T, Thavikulwat AT, Lee S, et al. FRNet: A Feature-Rich CNN Architecture to Defend
Against Adversarial Attacks. Pattern Recognition 2021;132:108923. https://ieeexplore.ieee.org/document/10431780.
Li Y, Liu S. Adversarial attack and defense in breast cancer deep learning systems. Bioengineering 2021;10:973. https:
//ieeexplore.ieee.org/document/10431780.
Anjum S, Ahmed I, Asif M, Aljuaid H, Alturise F, Ghadi YY, et al. Lung Cancer Classification in Histopathology Images
Using Multiresolution Efficient Nets. Computational Intelligence and Neuroscience 2023;https://onlinelibrary.wiley.com/
doi/10.1155/2023/7282944.
Sikder MM, A NN, Bairagi A, A AKAM. A Machine Learning Approach to Diagnosing Lung and Colon Cancer Using
a Deep Learning-Based Classification Framework. Sensors MDPI 2021;21:748. https://www.mdpi.com/1424-8220/21/3/
HeW, Liu T, Han Y, MingW, Du J, Liu Y, et al. A review: The detection of cancer cells in histopathology based on machine
vision. Computers in Biology and Medicine 2022;https://www.sciencedirect.com/science/article/pii/S0010482522004280?
via%3Dihub.
S V, M S, S K. A new complete color normalization method for H and E stained histopatholgical images. Applied
Intelligence 2021;51:7735–7748. https://link.springer.com/article/10.1007/s10489-021-02231-7.
C S,WL, Y J, P S, S R, D A, et al. Going deeper with convolutions. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition 2015;https://www.scopus.com/authid/detail.uri?authorId=8764903400.
N M, X Z, H Z, J S. Practical guidelines for efficient cnn architecture design. MDPI 2018;https://link.springer.com/chapter/
1007/978-3-030-01264-9_8.
M S, Z G. Deep Residual Learning for Image Recognition: A Survey. Applied Sciences (Switzerland) 2022;https://www.
mdpi.com/2076-3417/12/18/8972.
Y C,MZ, J L, X K. Adversarial attacks and defenses in image classification: A practical perspective. 2022 7th International
Conference on Image, Vision and Computing (ICIVC) 2022;p. 424–430. https://ieeexplore.ieee.org/document/9886997.
N C, DW. Towards evaluating the robustness of neural networks. Proceedings - IEEE Symposium on Security and Privacy
(2017) 2017;p. 39–57. https://ieeexplore.ieee.org/document/7958570.
M MDS, A F, P F. DeepFool: A simple and accurate method to fool deep neural networks. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (2016) 2016;https://ieeexplore.ieee.org/document/
N P, P M, S J,MF, B CZ, A S. The Limitations of Deep Learning in Adversarial Settings. 2016 IEEE European Symposium
on Security and Privacy (EuroS and P) 2015;https://ieeexplore.ieee.org/document/7467366.
Z H, S RA, D F. Parametric noise injection: Trainable randomness to improve deep neural network robustness against adversarial
attack. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2019;https://ieeexplore.
ieee.org/document/8954187.
J W, C W, Q L, C L, C W, J L. Adversarial attacks and defenses in deep learning for image recognition: A survey.
Neurocomputing (2022) 2022;p. 162–181. https://doi.org/10.1016/j.neucom.2022.09.004.
Dalianis, H. Evaluation metrics and evaluation. Dalam H. Dalianis, Clinical Text Mining. Springer International Publishing
;p. 45–53. https://doi.org/10.1007/978-3-319-78503-5_6.
Hicks SA, Strümke I, Thambawita V, Hammou M, Riegler MA, Halvorsen P, et al. On evaluation metrics for medical
applications of artificial intelligence. Scientific Reports 2018;12:45–53. https://doi.org/10.1038/s41598-022-09954-8.
Pacal I, Karaboga D, Basturk A, Akay B, Nalbantoglu U. A comprehensive review of deep learning in colon cancer.
Computers in Biology and Medicine 2020;126. https://doi.org/10.1016/j.compbiomed.2020.104003.
DOI: http://dx.doi.org/10.12962%2Fj20882033.v35i2.19630
Refbacks
- There are currently no refbacks.
IPTEK Journal of Science and Technology by Lembaga Penelitian dan Pengabdian kepada Masyarakat, ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/jts.

