ADVERSARIAL TRAINING FOR ROBUST DEFENSE IN CNN MODELS FOR LUNG AND COLON HISTOPATHOLOGICAL IMAGES

Chilyatun Nisa', Nanik Suciati, Anny Yuniarti

Abstract


Cancer stands as the world's second-leading cause of death, arising from abnormal cell growth that invades the body's cells and tissues. Simultaneous occurrences of lung and colon cancer are not uncommon, with lung cancer often emerging as the second primary cancer in colon cancer patients. While Deep Learning (DL) approaches have shown promise in accurate cancer classification, recent studies highlight the susceptibility of DL models to perturbations in input images. Merely achieving accuracy is insufficient; models must demonstrate resilience against even the slightest perturbations by applying adversarial defence methods. This study aims to enhance the reliability of the Convolutional Neural Network (CNN) algorithm in the face of adversarial attacks by implementing adversarial training. Leveraging the LC25000 dataset and various pre-trained CNN models for classification, we employ adversarial attack methods such as Carlini and Wagner, DeepFool, and SaliencyMap alongside adversarial training for defence. Evaluation metrics include precision, recall, F1-score, accuracy. Our assessment involves scrutinizing adversarial attacks and defences on histopathology images related to lung and colon issues, representing a state-of-the-art endeavour. The results indicate a significant improvement in susceptibility to adversarial attacks on histopathological images of the lungs and colon, from 0% to 81%.

Keywords


adversarial attack and defense, convolutional neural network, histopathology, image classification, lung and colon cancer

References


Kurishima, K., Miyazaki, K., Watanabe, H., Shiozawa, T., Ishikawa, H., Satoh, H., & Hizawa, N. (2018). Lung cancer patients with synchronous colon cancer. 8(1), 137–140. https://doi.org/10.3892/mco.2017.1471

Cancer Today (2020). Global Cancer Observatory (GLOBOCAN). Accessed May 03 2023, from http://gco.iarc.fr/today/home

Profil Kesehatan Indonesia Tahun (PUSDATIN) (2019). Kementerian Kesehatan Republik Indonesia. Accessed May 03 2023, from https://pusdatin.kemkes.go.id/resources/download/pusdatin/profil-kesehatan-indonesia/Profil-Kesehatan-indonesia-2019.pdfD

Hage Chehade, A., Abdallah, N., Marion, J.-M., Oueidat, M., & Chauvet, P. (2022). Lung and colon cancer classification using medical imaging: A feature engineering approach. Physical and Engineering Sciences in Medicine, 45(3), 729–746. https://doi.org/10.1007/s13246-022-01139-x

Hatuwal, B. K., & Thapa, H. C. (2020). Lung cancer detection using convolutional neural network on histopathological images. International Journal of Computer Trends & Technology, 68(10), 21–24. https://doi.org/10.14445/22312803/IJCTT-V68I10P104G

Ma, X., Niu, Y., Gu, L., Wang, Y., Zhao, Y., Bailey, J., & Lu, F. (2021). Understanding adversarial attacks on deep learning based medical image analysis systems. Pattern Recognition, 110, 107332. https://doi.org/10.1016/j.patcog.2020.107332I

Diyasa, I. G. S. M., Wahid, R. R., & Amiruddin, B. P. (2021). Grasping adversarial attacks on deep convolutional neural networks for cholangiocarcinoma classification. 2021 International Conference on e-Health and Bioengineering (EHB), 1–4. https://doi.org/10.1109/EHB52898.2021.9657589

Sipola, T., Puuska, S., & Kokkonen, T. (2020). Model fooling attacks against medical imaging: A short survey. Information & Security: An International Journal, 46(2), 215–224. https://doi.org/10.11610/isij.4615

Thangaraju, A., & Merkel, C. (2022). Exploring adversarial attacks and defenses in deep learning. 2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 1–6. https://doi.org/10.1109/CONECCT55679.2022.9865841

Wei, C., Sun, R., Li, P., & Wei, J. (2022). Analysis of the no-sign adversarial attack on the covid chest x-ray classification. 2022 International Conference on Image Processing and Media Computing (ICIPMC), 73–79. https://doi.org/10.1109/ICIPMC55686.2022.00022

Kaviani, S., Han, K. J., & Sohn, I. (2022). Adversarial attacks and defenses on AI in medical imaging informatics: A survey. Expert Systems with Applications, 198, 116815. https://doi.org/10.1016/j.eswa.2022. 116815

Lal, S., Rehman, S. U., Shah, J. H., Meraj, T., Rauf, H. T., Damaševičius, R., Mohammed, M. A., & Abdulkareem, K. H. (2021). Adversarial attack and defence through adversarial training and feature fusion for diabetic retinopathy recognition. Sensors, 21(11), 3922. https://doi.org/10.3390/s21113922

Shi, X., Peng, Y., Chen, Q., Keenan, T., Thavikulwat, A. T., Lee, S., Tang, Y., Chew, E. Y., Summers, R. M., & Lu, Z. (2022). Robust convolutional neural networks against adversarial attacks on medical images. Pattern Recognition, 132, 108923. https://doi.org/10.1016/j.patcog.2022.108923Q

Li, Y., & Liu, S. (2023). Adversarial attack and defense in breast cancer deep learning systems. Bioengineering, 10(8), 973. https://doi.org/10.3390/bioengineering10080973S

Borkowski, A. A., Bui, M. M., Thomas, L. B., Wilson, C. P., DeLand, L. A., & Mastorides, S. M. (2019). Lung and colon cancer histopathological image dataset (Lc25000). https://doi.org/10.48550/ARXIV.1912.12142

Masud, M., Sikder, N., Nahid, A.-A., Bairagi, A. K., & AlZain, M. A. (2021). A machine learning approach to diagnosing lung and colon cancer using a deep learning-based classification framework. Sensors, 21(3), 748. https://doi.org/10.3390/s21030748

He, W., Liu, T., Han, Y., Ming, W., Du, J., Liu, Y., Yang, Y., Wang, L., Jiang, Z., Wang, Y., Yuan, J., & Cao, C. (2022). A review: The detection of cancer cells in histopathology based on machine vision. Computers in Biology and Medicine, 146, 105636. https://doi.org/10.1016/j.compbiomed.2022.105636W

Vijh, S., Saraswat, M., & Kumar, S. (2021). A new complete color normalization method for H&E stained histopatholgical images. Applied Intelligence, 51(11), 7735–7748. https://doi.org/10.1007/s10489-021-02231-7Y

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2014). Going deeper with convolutions. https://doi.org/10.48550/ARXIV.1409.4842

Ma, N., Zhang, X., Zheng, H.-T., & Sun, J. (2018). Shufflenet v2: Practical guidelines for efficient cnn architecture design. https://doi.org/10.48550/ARXIV.1807.11164

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. https://doi.org/10.48550/ARXIV.1512.03385

Chen, Y., Zhang, M., Li, J., & Kuang, X. (2022). Adversarial attacks and defenses in image classification: A practical perspective. 2022 7th International Conference on Image, Vision and Computing (ICIVC), 424–430. https://doi.org/10.1109/ICIVC55077.2022.9886997

Carlini, N., & Wagner, D. (2017). Towards evaluating the robustness of neural networks. 2017 IEEE Symposium on Security and Privacy (SP), 39–57. https://doi.org/10.1109/SP.2017.49

Moosavi-Dezfooli, S.-M., Fawzi, A., & Frossard, P. (2015). DeepFool: A simple and accurate method to fool deep neural networks. https://doi.org/10.48550/ARXIV.1511.04599

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., & Swami, A. (2015). The limitations of deep learning in adversarial settings (arXiv:1511.07528; Versi 1). arXiv. https://doi.org/10.48550/arXiv.1511.07528

He, Z., Rakin, A. S., & Fan, D. (2019). Parametric noise injection: Trainable randomness to improve deep neural network robustness against adversarial attack. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 588–597. https://doi.org/10.1109/CVPR.2019.00068

Wang, J., Wang, C., Lin, Q., Luo, C., Wu, C., & Li, J. (2022). Adversarial attacks and defenses in deep learning for image recognition: A survey. Neurocomputing, 162–181. https://doi.org/10.1016/j.neucom.2022.09.004

Dalianis, H. (2018). Evaluation metrics and evaluation. Dalam H. Dalianis, Clinical Text Mining (hlm. 45–53). Springer International Publishing. https://doi.org/10.1007/978-3-319-78503-5_6

Hicks, S. A., Strümke, I., Thambawita, V., Hammou, M., Riegler, M. A., Halvorsen, P., & Parasa, S. (2022). On evaluation metrics for medical applications of artificial intelligence. Scientific Reports, 12(1), 5979. https://doi.org/10.1038/s41598-022-09954-8

Pacal, I., Karaboga, D., Basturk, A., Akay, B., & Nalbantoglu, U. (2020). A comprehensive review of deep learning in colon cancer. Computers in Biology and Medicine, 126, 104003. https://doi.org/10.1016/j.compbiomed.2020.104003




DOI: http://dx.doi.org/10.12962/j20882033.v35i2.19630

Refbacks

  • There are currently no refbacks.


Creative Commons License

IPTEK Journal of Science and Technology by Lembaga Penelitian dan Pengabdian kepada Masyarakat, ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/jts.