Modification of Chitosan-Chitosan Phtalate Anhydrides Matrices
Abstract
Keywords
Full Text:
PDFReferences
F. Adam, K. H. Dery, and S. W. Mada, “Perancangan Alat Pendeteksi Kadar polusi Udara Mengunakan Sensor Gas MQ-7 dengan Teknologi Wireless HC-05,” J. Istek, vol. X, no. 2, 2017.
Q. Li et al., “High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode,” Adv. Sci., vol. 3, no. 11, 2016.
M. Goor, S. Menkin, and E. Peled, “High power direct methanol fuel cell for mobility and portable applications,” Int. J. Hydrogen Energy, 2018.
K. Peng, J. Lai, and Y.-L. Liu, “Nanohybrids of graphene oxide chemically-bonded with Nafion: Preparation and application for proton exchange membrane fuel cells,” J. Memb. Sci., vol. 514, pp. 86–94, 2016.
B. Smitha, S. Sridhar, and A. Khan, “Chitosan–poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications,” J. Power Sources, vol. 159, no. 2, 2005.
B. Ong, S. Kamarudin, M. Masdar, and U. Hasran, “Applications of graphene nano-sheets as anode diffusion layers in passive direct methanol fuel cells (DMFC),” Int. J. Hydrogen Energy, vol. 42, no. 14, pp. 9252–9261, 2016.
B. P. Chang, H. M. Akil, and R. M. Nasir., “Mechanical and Tribological Properties of Zeolite-reinforced UHMWPE Composite for Implant Application,” Procedia Eng., vol. 68, pp. 88 – 94, 2013.
B. Tripathi and V. K. Shahi, “Organic-Inorganic Nanocomposite Polymer Electrolyte Membranes for Fuel Cell Applications,” Prog. Polym. Sci., vol. 36, pp. 945–979, 2011.
C. Nugraeni, “Montmorilonit Termodifikasi Aptes sebagai Filler dalam Membrane DMFC Berbasis Kitosan Termodifikasi Anhidrat Ftalat,” Intitut Teknologi Sepuluh Nopember, 2018.
Wan and et al, “Synthesis, Characterization and Ionic Conductive Properties of Phosphorylated Chitosan Membranes,” Macromol Chem. Physic, vol. 204, pp. 850 – 858, 2003.
S. Sonawane, Y. Setty, and S. Sapavatu, Chemical and bioprocess engineering: Trends and developments. CRC Press, 2015.
D. Gómez-Ríos, R. Barrera-Zapata, and R. Ríos-Estepa, “Comparison of process technologies for chitosan production from shrimp shell waste: A techno-economic approach using Aspen Plus® Food Bioprod,” Process, vol. 103, pp. 49–57, 2017.
M. Nouri, F. Khodaiyan, S. Razavi, and M. Mousavi, “Improvement of chitosan production from Persian Gulf shrimp waste by response surface methodology Food Hydrocoll.” 2016.
S. Hajji et al., “Structural differences between chitin and chitosan extracted from three different marine sources,” Int. J. Biol. Macromol., vol. 65, pp. 298–306, 2014.
P. Mukoma, B. Jooste, and H. Vosloo, “A comparison of methanol permeability in Chitosan and Nafion 117 membranes at high to medium methanol concentrations,” J. Memb. Sci., vol. 243, pp. 293–299, 2004.
L. O. A. N. Ramadhan, C. L. Radiman, V. Suendo, D. Wahyuningrum, and S. Valiyaveettil, “Synthesis and characterization of Polyelectrolyte Complex N-Succinylchitosan-chitosan for Proton Exchange Membrane,” Procedia Chem., pp. 114–122, 2012.
F. Ahing and N. Wid, “Extraction and Characterization of Chitosan from Shrimp Shell Waste in Sabah,” Trans. Sci. Technol., vol. 3, pp. 227–237, 2016.
I. Tsigos, A. Martinou, D. Kafetzopoulos, and V. Bouriotis, “Chitin deacetylases: new, versatile tools in biotechnology,” Trends Biotechnol., vol. 18, no. 7, pp. 305–312, 2000.
S. Tan, E. Khor, T. Tan, and S. Wong, “The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination,” Talanta, vol. 45, pp. 713–719, 2005.
DOI: http://dx.doi.org/10.12962/j20882033.v30i3.5504
Refbacks
- There are currently no refbacks.
IPTEK Journal of Science and Technology by Lembaga Penelitian dan Pengabdian kepada Masyarakat, ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/jts.