Minimum Constructive Back Propagation Neural Network Based on Fuzzy Logic for Pattern Recognition of Electronic Nose System
Abstract
Keywords
Full Text:
PDFReferences
T. C. Pearce, S. S. Schiffmen, H. T. Nagle, and J. W. Gardner, Handbook of Machine Olfaction. New York: WILEY-VCH Verlag GmbH & Co. KgaA., 2003.
H. Yu, J. Wang, C. Yao, H. Zhang, and Y. Yu, “Quality grad identification of green tea using E-nos by CA and ANN”, LWT, vol. 41, pp. 1268–1273, 2008.
S. Panigrahi, S. Balasubramanian, H. Gu, C. Lague, and M. March llo, “N ural-network-integrated electronic nose system for id ntification of spoil d b f”, LWT, vol. 39, pp. 135–145, 2005,.
M. H. Purnomo and A. Kurniawan, Supervised Neural Networks dan Aplikasinya. Yogyakarta: Graha Ilmu, 2006.
Z. B. Shi, T. Yu, Q. Zhao, Y. Li, and Y. B. Lan, “Comparison of Algorithms for an El ctronic Nos in Id ntifying Liquors”, Journal of Bionic Engineering, vol. 5, pp. 253–257, 2008.
M. L htokangas, “Mod ling ith constructiv backpropagation”, Neural Networks, vol. 21, pp.707–716, 1999.
M. L htokangas, “Modifi d constructiv back-propagation for r gr ssion”, Neurocomputing, vol. 35, pp. 113-122, 2000.
. S tiono, “Finding minimal n ural networks for business int llig nc application”. presented at IFSA-AFSS International Conference, Surabaya-Bali Indonesia, 2011.
T. S. Widodo, Sistem Neurofuzzy. Yogyakarta: Graha Ilmu, 2005.
Radi, M. Rivai,M. H. Purnomo, “Multi-thread constructive back propagation n ural n t ork for aroma patt rn classification”, in Proc. 2011 IFSA-AFSS International Conference.
DOI: http://dx.doi.org/10.12962/j20882033.v22i3.69
Refbacks
- There are currently no refbacks.
IPTEK Journal of Science and Technology by Lembaga Penelitian dan Pengabdian kepada Masyarakat, ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/jts.