Operator Solusi Model Fluida Termampatkan Tipe Korteweg Dengan Kondisi Batas Slip di Half-Space Kasus Koefisien ((μ + ν)/(2 κ))^2 -(1/κ) > 0, κ =μ ν , μ≠ν

Suma Inna, Irma Fauziah, Muhammad Manaqib, Priska Maya Putri

Abstract


Artikel ini membahas model fluida termampatkan tipe Korteweg dengan kondisi batas slip di half space space ( . Model ini biasanya digunakan untuk mendeskripsikan aliran fluida dua fase di mana terdapat fase transisi pada antarmuka fase tersebut yang dikenal dengan efek kapiler. Untuk mengatasi efek kapiler tersebut, Korteweg mengembangkan model Navier-Stokes dengan menambahkan unsur kapilaritas pada persamaan Navier-Stokes. Dalam artikel ini ditunjukkan bahwa terdapat solusi pada model Navier-Stokes tipe Korteweg untuk kasus di mana koefisien  ((μ + ν)/(2 κ))^2 -(1/κ) > 0, κ =μ ν dengan μ≠ν. Kasus koefisien ini muncul berdasarkan kondisi akar persamaan karakteristik dari model yang dibahas dalam artikel ini.

Keywords


Fluida termampatkan, Tranformasi Fourier, Navier Stokes Korteweg

Full Text:

PDF

References


H. Freistühler and M. Kotschote, “Phase-Field and Korteweg-Type Models for the Time-Dependent Flow of Compressible Two-Phase Fluids,” Arch. Ration. Mech. Anal., vol. 224, no. 1, 2017, doi: 10.1007/s00205-016-1065-0.

M. Kotschote, “Strong well-posedness for a korteweg-type model for the dynamics of a compressible non-isothermal fluid,” J. Math. Fluid Mech., vol. 12, no. 4, 2010, doi: 10.1007/s00021-009-0298-1.

M. Kotschote, “Existence and time-asymptotics of global strong solutions to dynamic korteweg models,” Indiana Univ. Math. J., vol. 63, no. 1, 2014, doi: 10.1512/iumj.2014.63.5187.

B. Haspot, “Existence of global weak solution for compressible fluid models of Korteweg type,” J. Math. Fluid Mech., vol. 13, no. 2, 2011, doi: 10.1007/s00021-009-0013-2.

D. Bian, L. Yao, and C. Zhu, “Vanishing capillarity limit of the compressible fluid models of korteweg type to the navier-stokes equations,” SIAM J. Math. Anal., vol. 46, no. 2, 2014, doi: 10.1137/130942231.

M. Kotschote, “Strong solutions for a compressible fluid model of Korteweg type,” Ann. l’I.H.P. Anal. non linéaire, vol. 25, no. 4, pp. 679–696, 2008, doi: 10.1016/j.anihpc.2007.03.005.

H. Saito, “Compressible Fluid Model of Korteweg Type with Free Boundary Condition: Model Problem,” Funkc. Ekvacioj, vol. 62, no. 3, pp. 337–386, 2019, doi: 10.1619/fesi.62.337.

H. Saito, “Existence of $mathcal{R}$-bounded solution operator families for a compressible fluid model of Korteweg type on the half-space,” Math. Methods Appl. Sci., vol. 44, no. 2, pp. 1744–1787, Jan. 2021, doi: https://doi.org/10.1002/mma.6875.

S. Inna, S. Maryani, and H. Saito, “Half-space model problem for a compressible fluid model of Korteweg type with slip boundary condition,” J. Phys. Conf. Ser., vol. 1494, no. 1, p. 012014, 2020, doi: 10.1088/1742-6596/1494/1/012014.

S. Inna and H. Saito, “Local Solvability for a Compressible Fluid Model of Korteweg Type on General Domains,” Mathematics, vol. 11, no. 10, May 2023, doi: 10.3390/math11102368.




DOI: http://dx.doi.org/10.12962/limits.v20i2.12954

Refbacks

  • There are currently no refbacks.


Jumlah Kunjungan:

Creative Commons License
Limits: Journal Mathematics and its Aplications by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/limits.