Characterizations of 2-Primal Ternary Semiring using Special Subsets of Ternary Semiring
Abstract
Full Text:
PDFReferences
H. S. Vandiver, “Note on a Simple Type of Algebra in which the Cancellation Law of Addition does not Hold,” Bull. Am. Math. Soc., vol. 40, pp. 914–920, 1934.
W. G. Lister, “Ternary Rings,” Trans. Am. Math. Soc., vol. 154, pp. 37-55, 1971, doi: 10.2307/1995425.
T. K. Dutta and S. Kar, “On Regular Ternary Semirings,” Proc. ICM Sat. Con. Alg. Rel. Top., pp. 343-355, 2003. doi: 10.1142/9789812705808_0027.
D. M. Rao and G. S. Rao, “Concepts on Ternary Semirings”. Int. J. Mod. Sci. Eng. Tech., vol. 1, no. 7, pp. 105-110, 2014
D. M. Rao and G. S. Rao, “Special Elements of a Ternary Semiring,” J. Eng. Res. Appl., vol. 4, no. 115, 2014.
S. Kar and A. Shikari, “Soft Ternary Semirings,” Fuzzy Inf. Eng., vol. 8, no. 1, pp. 1–15, 2016, doi: 10.1016/j.fiae.2016.03.001.
T. K. Dutta, S. Kar, and K. Das, “Power Ternary Semirings,” Afrika Mat., vol. 26, no. 7, pp. 1483–1494, 2015, doi: 10.1007/s13370-014-0300-9.
T. K. Dutta and S. Kar, “A Note on Regular Ternary Semirings,” Kyung. Math. J., vol. 46, no. 3, pp. 357–365, 2006.
V. R. Daddi and Y. S. Pawar, “On Completely Regular Ternary Semiring,” Novi Sad J. Math., vol. 42, no. 2, pp. 1–7, 2012.
S. Manivasan and S. Parvathi, “Completely P-Regular Ternary Semiring,” Malaya J. Mat., vol. 8, no. 4, pp. 1509–1513, 2020, doi: 10.26637/mjm0804/0029.
T. K. Dutta, K. P. Shum, and S. Mandal, “Weakly Special Radical Class and Special Radical Class of Ternary Semirings,” Eur. J. Pure Appl. Math., vol. 5, no. 4, pp. 401–413, 2012.
J. N. Chaudhari and K. J. Ingale, “Ideals in the Ternary Semiring of Non-Positive Integers,” Bull. Malaysian Math. Sci. Soc., vol. 37, no. 4, pp. 1149–1156, 2014.
S. Kar, “Ideal Theory in the Ternary Semiring ℤ-0,” Bull. Malaysian Math. Sci. Soc., vol. 34, no. 1, pp. 69–77, 2011.
T. K. Dutta, K. P. Shum, and S. Mandal, “Singular Ideals of Ternary Semirings,” Eur. J. Pure Appl. Math., vol. 5, no. 2, pp. 116–128, 2012.
S. K. Bhambri, M. K. Dubey, and Anuradha, “On Prime, Weakly Prime Left Ideals and Weakly Regular Ternary Semirings,” South. Asian Bull. Math., vol. 37, pp. 801–811, 2013.
D. Krishnaswamy and T. Anitha, "Fuzzy Prime Ideals in Ternary Semirings," Annals of Fuzzy Math. and Inf., vol. 7, no. 5, pp. 755-763, 2014.
S. Wani and K. Pawar, “On Essential Ideals of a Ternary Semiring,” Sohag J. Math., vol. 4, no. 3, pp. 65–68, 2017, doi: 10.18576/sjm/040301.
J. N. Chaudhari and K. J. Ingale, “Subtractive Extension of Ideals in Ternary Semirings,” Thai J. Math., vol. 14, no. 3, pp. 615–625, 2016.
D. M. Rao and G. S. Rao, “Structure of Certain Ideals in Ternary Semirings,” Int. J. Innov. Sci. Mod. Eng., vol. 3, no. 2, pp. 2319–6386, 2015.
M. Palanikumar and K. Arulmozhi, "New Approach Towards A-Ideals in Ternary Semirings," Annals of Com. in Math., vol. 4, no. 2, 2021.
M. Palanikumar and K. Arulmozhi, "Different Types of Prime Bi-Ideals in Ternary Semirings," Annals of Com. in Math., vol. 4, no. 2, 2021.
M. Palanikumar and K. Arulmozhi, "On Various Tri-Ideals in Ternary Semirings," Bull. of the Math. Vir. Ins., vol. 11, no. 1, pp. 79-90, 2021.
G. Muhiuddin, J. Catherine Grace John, B. Elavarasan, K. Porselvi, and D. Al-Kadi, "Properties of k-Hybrid Ideals in Ternary Semiring," J. of Intell. & Fuzzy Sys., vol. 42, no. 6, pp. 5799-5807, 2022.
T. K. Dutta and S. Mandal, “Some Characterizations of 2-Primal Ternary Semiring,” South. Asian Bull. Math., vol. 39, no. 6, pp. 769–783, 2015.
G. Shin, “Prime Ideals and Sheaf Representation of a Pseudo Symmetric Ring,” Trans. Am. Math. Soc., vol. 184, pp. 43-60, 1973, doi: 10.2307/1996398.
DOI: http://dx.doi.org/10.12962/limits.v20i1.12965
Refbacks
- There are currently no refbacks.
Jumlah Kunjungan:
Limits: Journal Mathematics and its Aplications by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/limits.