WAVELET-JARINGAN SYARAF TIRUAN UNTUK PREDIKSI DATA TIME SERIES
Abstract
Syaraf Tiruan, yang selanjutnya disebut WANN (WaveletArticial
Neural Network) digunakan untuk memprediksi data time
series.
Ada tiga tahapan untuk mendapatkan hasil prediksi data times
series dengan metoda WANN, yaitu pre-processing, prediction, dan post-processing. Pre-processing digunakan untuk mendekomposisi data masukan, prediction merupakan proses training, dan post processing dipakai untuk merekontruksi data setelah dilakukan training. Selanjutnya dilakukan simulasi dengan menggunakan MATLAB. Dari simulasi ini diperoleh data short term prediction dan long term prediction.
Keywords
Full Text:
PDFReferences
Burrus C. Sidney, dkk., Introduction to Wavelets and Wavelet
Transforms, Prentice Hall International, Inc, Housto, 1998.
Cryer, Jonatan D., time series Analysis, PWS-KENT Publishing
company, Boston, 1996.
Fausett Laurene, Fundamentals of Neural Network, Prentice Hall, New Jersey, 1994.
Lin Feng, dkk, Times Series Forecasting with Neural Network, Central Queensland Universty, Australia, 1994.
Loh Ruey Hwa, Times Series Forecast with neural network and wavelet techniques, The University of Queeland, 2003.
Reanaud Oliver dkk, Kalman-type Filtering using the Wavelet
Transform, Elsivier Science, 2000.
Vlad Sorin, On the prediction methods using neural network, University of Suceava, Romania, 2002.
Zhang Zhguo, San ye, Adaptive Wavelet Neural Network for Prediction of Hourly NOx and NO2 Concentration.
DOI: http://dx.doi.org/10.12962/j1829605X.v4i2.1417
Refbacks
- There are currently no refbacks.
Jumlah Kunjungan:
Limits: Journal Mathematics and its Aplications by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/limits.