#### Abstract

Rice is one of the main crops produced by agricultural commodities which is staple food of most Indonesian people. The availability of rice is needed to anticipate the emergence of problems in the future such as population growth, changes in seasons, or as an export commodity. Estimation of rice availability in the future can be done by forming a mathematical model, where the mathematical model used is the Verhulst logistic model. The differential equations in the Verhulst model are first solved using Runge-Kutta method  to obtain four initial solutions to be used in finding approximate values using the Adams-Bashforth-Moulton method. After obtaining an approximate solution, a comparison of the accuracy based on error is carried out. The Verhulst model with a step size  and carrying capacity rice harvest at Jombang Regency  limited  500,000 tons, 600,000 tons, and 700,000 tons, obtained rate error values from numerical solution of Adams-Bashforth-Moulton method is 3.35%, 3.39%, and 3.36%.

#### Keywords

Verhulst Model, Runge-Kutta Method, Adams-Bashforth-Moulton Method.

PDF

#### References

Direktorat Jenderal Tanaman Pangan, “Rencana Strategis Direktorat Jenderal Tanaman Pangan Tahun 2020-2024,” Jakarta, 2020.

N. Asiyah and S. Winarko, Buku Ajar Persamaan Diferensial Biasa. Surabaya: Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Sepuluh Nopember, 2012.

I. K. A. Atmika, Diktat Mata Kuliah Metode Numerik. Teknik Mesin, Fakultas Teknik, Universitas Udayana, 2016.

K. E. Atkinson, W. Han, and D. Stewart, Numerical Solution of Ordinary Differential Equations. Iowa: John Wiley & Sons, Inc., 2009.

S. Abdullah, “Penerapan Metode Adams-Bashforth-Moulton pada Persamaan Logistik dalam Memprediksi Pertumbuhan Penduduk di Provinsi Sulawesi Selatan,” Tugas Akhir Jurusan Matematika, Fakultas Sains dan Teknologi, Universitas Islam Negeri Alauddin Makassar, 2016.

R. P. Canale and S. C. Chapra, Numerical Methods for Engineers. New York: McGraw-Hill, 2010.

A. Tsoularis and J. Wallace, “Analysis of Logistic Growth Models,” Math. Biosci., vol. 179, no. 1, pp. 23–46, 2002.

J.-M. Ginoux, “The Paradox of Vito Volterra’s Predator-Prey Model,” Lett. Mat., vol. 5, no. 4, pp. 305–311, 2017.

Uce, P. Silvy, R. Suhaemi, and H. Kartika, “Aplikasi Metode Eksponensial dan Logistik dalam Meramalkan Jumlah Penduduk Kabupaten Karawang pada Tahun 2020,” Pros. Semin. Nas. Mat. dan Pendidik. Mat., pp. 6–13, 2017.

W. Putri, “Perbandingan Model Malthus dan Model Verhulst untuk Estimasi Jumlah Penduduk Indonesia Tahun 2000 - 2014,” J. Mat. Univ. Andalas, vol. 4, no. 1, pp. 1–11, 2015.

S. Maharani and E. Suprapto, Analisis Numerik Berbasis Group Investigation untuk Meningkatkan Kemampuan Berpikir Kritis. Magetan: AE Medika Grafika, 2018.

A. P. Hayes, “The Adams-Bashforth-Moulton Integration Methods Generalized to an Adaptive Grid,” University of Maine, Maine, United State, 2011.

DOI: http://dx.doi.org/10.12962/limits.v21i1.14843

### Refbacks

• There are currently no refbacks.

Jumlah Kunjungan: