Pelacakan Mundur Partikel Sampah dengan Metode Euler-Lagrange di Pelabuhan Ratu

Ivonne Milichristi Radjawane, Ilyas Nurfadhil Basuki, Gandhi Napitupulu

Abstract


Masalah yang sering dijumpai pada daerah pesisir adalah banyaknya sampah terapung. Salah satu Kawasan pesisir yang akan menjadi daerah kajian studi ini adalah daerah pariwisata Pelabuhan Ratu yang terletak di bagian Barat Daya pulau Jawa. Tujuan studi ini adalah untuk melakukan pelacakan mundur untuk mencari sumber sampah laut yang berada di Teluk Pelabuhan Ratu. Model hidrodinamika 2 dimensi horizontal digunakan untuk simulasi arus laut dan melacak masing-masing sampah laut sebagai partikel secara mundur terhadap waktu dengan metode Euler-Lagrange. Data input model berupa data batimetri, posisi sampah, kecepatan angin, dan elevasi pasang surut. Hasil trayektori (lintasan) menunjukkan kesesuaian antara hasil pelacakan maju dan pelacakan mundur di mana sebagian besar partikel yang dilacak mundur berakhir di posisi yang dekat dengan posisi awal pelacakan maju. Hasil simulasi juga menunjukkan kesesuaian dalam perpindahan partikel dengan perhitungan manual dan pola trayektori partikel yang berbentuk elips juga sesuai dengan teori arus pasang surut (pasut). Hasil pelacakan mundur partikel di dalam Teluk Pelabuhan Ratu menghasilkan trayektori yang sangat pendek akibat arus yang sangat kecil yang mengindikasi sampah di dalam teluk berasal dari daerah pesisir teluk. Partikel yang bergerak ke arah timur akan diperpanjang trayektorinya pada musim barat dan pada musim timur, partikel yang bergerak ke arah barat diperpanjang trayektorinya.


Keywords


Metode Euler-Lagrange; Model hidrodinamika dua dimensi; Pelacakan mundur partikel; Sampah laut

Full Text:

PDF

References


I. Gede, D. Bagaskara, Y. Suteja, and G. Hendrawan, “Pemodelan Pergerakan Mikroplastik di Selat Bali,” ojs.unud.ac.id, vol. 6, no. 2, pp. 205–215, 2020, doi: 10.24843/jmas.2020.v06.i02.p7.

Y. Noya, J. T.-J. P. Sains, and undefined 2021, “Kepadatan dan pola transport sampah laut terapung di pesisir barat perairan Teluk Ambon Luar,” ejurnal.mipa.unsri.ac.id, vol. 23, no. 1, pp. 19–27, 2021, Accessed: Aug. 19, 2023. [Online]. Available: http://ejurnal.mipa.unsri.ac.id/index.php/jps/article/view/594

J. R. Jambeck et al., “Plastic waste inputs from land into the ocean,” Science (1979), vol. 347, no. 6223, pp. 768–771, Feb. 2015, doi: 10.1126/SCIENCE.1260352/SUPPL_FILE/JAMBECK.SM.PDF.

S. Lincoln et al., “Marine litter and climate change: Inextricably connected threats to the world’s oceans,” Science of The Total Environment, vol. 837, p. 155709, Sep. 2022, doi: 10.1016/J.SCITOTENV.2022.155709.

I. Yani Zaini, S. Hariyadi, D. Manajemen Sumberdaya Perairan, and F. Perikanan dan Ilmu Kelautan, “Marine Debris Generation in The Cimandiri Estuarine Area River Flow, Palabuhanratu Bay,” journal.ipb.ac.id, vol. 06, p. 1, 2022, Accessed: Aug. 19, 2023. [Online]. Available: https://journal.ipb.ac.id/index.php/jurnalppt/article/view/42120

A. Nahum and A. Seifert, “Technique for backward particle tracking in a flow field,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 74, no. 1, p. 016701, Jul. 2006, doi: 10.1103/PHYSREVE.74.016701/FIGURES/15/MEDIUM.

P. Wapperom, R. Keunings, and V. Legat, “The backward-tracking Lagrangian particle method for transient viscoelastic flows,” J Nonnewton Fluid Mech, vol. 91, no. 2–3, pp. 273–295, Jul. 2000, doi: 10.1016/S0377-0257(99)00095-6.

M. A. Gusyev, D. Abrams, M. W. Toews, U. Morgenstern, and M. K. Stewart, “A comparison of particle-tracking and solute transport methods for simulation of tritium concentrations and groundwater transit times in river water,” Hydrol Earth Syst Sci, vol. 18, no. 8, pp. 3109–3119, Aug. 2014, doi: 10.5194/HESS-18-3109-2014.

A. Stohl, S. Eckhardt, C. Forster, P. James, N. Spichtinger, and P. Seibert, “A replacement for simple back trajectory calculations in the interpretation of atmospheric trace substance measurements,” Atmos Environ, vol. 36, no. 29, pp. 4635–4648, Oct. 2002, doi: 10.1016/S1352-2310(02)00416-8.

J. Fang, L. Tacher, and A. Parriaux, “Backward simulation of the probability of a trace particle reaching a given region,” Probabilistic Engineering Mechanics, vol. 20, no. 1, pp. 97–101, Jan. 2005, doi: 10.1016/J.PROBENGMECH.2004.07.001.

U. H. Thygesen, “How to reverse time in stochastic particle tracking models,” Journal of Marine Systems, vol. 88, no. 2, pp. 159–168, Nov. 2011, doi: 10.1016/J.JMARSYS.2011.03.009.

L. Long, X. Liu, C. Zhao, Z. Wang, and H. Sun, “Numerical Investigation of the Water-Drop Impact on Low-Drag Airfoil Using the Euler–Euler Approach and Eulerian Wall Film Model,” Applied Sciences 2023, Vol. 13, Page 7743, vol. 13, no. 13, p. 7743, Jun. 2023, doi: 10.3390/APP13137743.

M. A. Fathurahman et al., “Studi karakteristik dan distribusi co-range pasang surut di perairan Teluk Pelabuhan Ratu Sukabumi,” ejournal2.undip.ac.id, 2021, Accessed: Aug. 19, 2023. [Online]. Available: https://ejournal2.undip.ac.id/index.php/ijoce/article/view/9701

S. Patankar, Numerical heat transfer and fluid flow. 2018. Accessed: Aug. 19, 2023. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=Y2G1DwAAQBAJ&oi=fnd&pg=PP1&dq=Numerical+Heat+Transfer+and+Fluid+Flow&ots=7TN58UvcUH&sig=yjIpyYR8byODESrpgQcLs_gdBRA

A. Nahum and A. Seifert, “Technique for backward particle tracking in a flow field,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 74, no. 1, p. 016701, Jul. 2006, doi: 10.1103/PHYSREVE.74.016701/FIGURES/15/MEDIUM.

B. G. Hatcher, “Dynamics of marine ecosystems Biological-physical interactions in the oceans,” Botanica Marina, vol. 49, no. 3, Jul. 2006, doi: 10.1515/BOT.2006.033/HTML.

J. Kämpf, Ocean modelling for beginners: using open-source software. 2009. doi: 10.1007/978-3-642-00820-7.

A. Nahum, A. S.-P. R. E, and undefined 2006, “Technique for backward particle tracking in a flow field,” APSA Nahum, A SeifertPhysical Review E, 2006•APS, vol. 74, no. 1, 2006, doi: 10.1103/PhysRevE.74.016701.

H. P. Batchelder, “Forward-in-Time-/Backward-in-Time-Trajectory (FITT/BITT) Modeling of Particles and Organisms in the Coastal Ocean,” J Atmos Ocean Technol, vol. 23, no. 5, pp. 727–741, May 2006, doi: 10.1175/JTECH1874.1.

E. Lu et al., “Adaptive backstepping control of tracked robot running trajectory based on real-time slip parameter estimation,” International Journal of Agricultural and Biological Engineering, vol. 13, no. 4, pp. 178–187, Aug. 2020, doi: 10.25165/IJABE.V13I4.5739.

D. Adhikari, B. J. Gemmell, M. P. Hallberg, E. K. Longmire, and E. J. Buskey, “Simultaneous measurement of 3D zooplankton trajectories and surrounding fluid velocity field in complex flows,” journals.biologists.comD Adhikari, BJ Gemmell, MP Hallberg, EK Longmire, EJ BuskeyJournal of Experimental Biology, 2015•journals.biologists.com, 2015, doi: 10.1242/jeb.121707.

V. Ekman, Eddy-viscosity and skin-friction in the dynamics of winds and ocean-currents. 1928. Accessed: Aug. 19, 2023. [Online]. Available: http://faculty.eas.ualberta.ca/jdwilson/EAS372_13/ekman_mem2.pdf

Chad A. Greene, Svetlana Erofeeva, Laurie Padman, Susan Howard, Tyler Sutterley, and Gary Egbert, “Tide Model Driver (TMD) Manual,” 2023, [Online]. Available: http://www.coas.oregonstate.edu/research/po/research/tide/region.html.




DOI: http://dx.doi.org/10.12962/limits.v20i3.18676

Refbacks

  • There are currently no refbacks.


Jumlah Kunjungan:

Creative Commons License
Limits: Journal Mathematics and its Aplications by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/limits.