Analisis Nilai Inflasi Bulanan Indonesia Menggunakan Regresi Nonparametrik Estimator Kernel
Abstract
High levels of inflation are plaguing Indonesian society. Inflation occurs due to price increases as indicated by the increase in most expenditure group indices. This can lead to a higher poverty rate in Indonesia. This study aims to identify the best method that can be used to estimate Indonesia's monthly inflation value based on a nonparametric regression approach with a kernel estimator and analyze the results of predicting Indonesia's monthly inflation value for the next four months. The data used in this study is secondary data sourced from Bank Indonesia, with the variable used is the value of Indonesian inflation during the period January 2019 to July 2024. The collected data were analyzed using descriptive statistics and analytical statistics in the form of nonparametric regression with kernel estimators and predictions using kernel estimator and non-seasonal ARIMA methods. The results showed that triweight kernel regression was the best kernel function model with a minimum bandwidth value of 1.214, value of 99.990, MSE of 0.00016, and MAPE of 0.348%. The results of data prediction for the next thirteen months provide that triweight kernel estimator was better than non seasonal ARIMA method, with a MAPE value of 10.92%, so that the nonparametric regression method with the triweight kernel function is good or accurate in predicting data, which also can be used to analyze and predict Indonesia's monthly inflation data.
Keywords
Full Text:
PDFReferences
A. Salim, Fadilla, and A. Purnamasari, ”Pengaruh Inflasi Terhadap Pertumbuhan Ekonomi Indonesia,” Jurnal Pemikiran Dan Pengembangan Ekonomi Syariah, vol. 7, no. 1, pp. 17-27, 2021.
Badan Pusat Statistik, ”Inflasi Year-On Year (y-on-y) pada Juli 2024 sebesar 2,13 persen dengan Indeks Harga Konsumen (IHK) sebesar 106,09,” https://www.bps.go.id/id/pressrelease/2024/08/01/2306/inflasi-year-on-year--y-on-y--pada-juli-2024-sebesar-2-13-persen-dengan-indeks-harga-konsumen--ihk--sebesar-106-09-.html.
R. Hadifa, and A. Hukom, “Impact of Covid-19 on the Inflation Rate of Central Kalimantan Province,” Budapest International Research and Critics Institute (BIRCI-Journal): Humanities and Social Sciences, vol. 4, no. 4, pp. 10895-10903, 2021.
A. T. Wuleng, A. Islamiyati, and E. T. Herdiani, “Pemodelan Data Time Series Dengan Penalize Spline Filter,” UNDIP, vol. 1, no. 1, 2014.
Suparti, R. Santoso, A. Prahutama, and A. R. Devi, Regresi Nonparametrik. Ponorogo: Wade Group, 2018.
W. Hardle, Smoothing Techniques with Implementation in S. New York: Cambridge University Press, 1990.
Suparti, D. Safitri, I. P. Sari, and A. R. Devi, “Analisis Data Inflasi di Indonesia Menggunakan Model Regresi Kernel,” Prosiding Seminar Nasional Statistika Universitas Diponegoro 2013, pp. 499-509, 2013.
N. A. Sudibyo, A. Iswardani, A. W. Septyanto, and T. G. Wicaksono, “Prediksi inflasi di indonesia menggunakan metode moving average, single exponential smoothing dan double exponential smoothing,” Jurnal Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, vol. 1, no. 2, pp. 123-129, 2020.
N. A. K. Rifai, “Pendekatan Regresi Nonparametrik dengan Fungi kernel untuk Indeks Harga Saham Gabungan,” Statistika, vol. 19, no. 1, pp. 53-61, 2019.
Bank Indonesia, ”Data Inflasi,” https://www.bi.go.id/id/statistik/indikator/data-inflasi.aspx.
E. Yilmaz, B. Yizbasi, and D. Aydin, ”Choice of Smoothing Parameter for Kernel Type Ridge Estimators in Semiparametric Regression Models,” REVSTAT-Statistical Journal, vol, 19, no. 1, pp.47-69, 2021.
N. Chamidah and B. Lestari, Analisis Regresi Nonparametrik dengan Perangkat Lunak R. Surabaya: Airlangga University Press, 2022.
Y. Wang, Smoothing Splines: Methods and Applications. New York: CRC Press, 2011.
B. Lestari, Fatmawati, and I. N. Budiantara,”Spline Estimator and Its Asymptotic Properties in Multiresponse Nonparametric Regression Model,” Songklanakarin Journal of Science and Technology (SJST), vol. 42, no. 3, pp. 533-548, 2020.
C. Chatfield, The Analysis of Time Series: An Introduction, Third Edition. London: Chapman and Hall Ltd, 1984.
J. J. Moreno, A. P. Pol, A. S. Abad, and B. C. Biasco, ”Using The R-Mape Index as a Resistant Measure of Forecast Accuracy,” Psicothema, vol. 25, no. 4, pp. 500-506, 2013.
Badan Pusat Statistik, ”Deflasi terjadi pada Agustus 2020 sebesar 0,05 persen. Deflasi tertinggi terjadi di Kupang sebesar 0,92 persen,” https://www.bps.go.id/id/pressrelease/2020/09/01/1662/deflasi-terjadi-pada-agustus-2020-sebesar-0-05-persen--deflasi-tertinggi-terjadi-di-kupang-sebesar-0-92-persen-.html.
CNBC Indonesia, ”BPS: Inflasi 2020 Terendah Sepanjang Sejarah RI,” https://www.cncbindonesia.com/news/20210104125752-4-213302/bps-inflasi-2020-terendah-sepanjang-sejarah-ri.
D. Wuryandani, ”Faktor Inflasi Dalam Pertumbuhan Ekonomi Indonesia,” Info Singkat, vol. 14, no. 21, pp. 13-18, 2022.
DOI: http://dx.doi.org/10.12962/limits.v21i2.20794
Refbacks
- There are currently no refbacks.
Jumlah Kunjungan:
Limits: Journal Mathematics and its Aplications by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/limits.