Evaluasi Kinerja Spectral Biclustering dalam Identifikasi Potensi Produksi Komoditas Hortikultura di Indonesia
Abstract
Biclustering merupakan metode penggerombolan dua arah untuk menemukan subset baris dan kolom dari suatu matriks data. Spectral biclustering merupakan salah satu algoritma dari biclustering. Algoritma spectral mempunyai tiga metode normalisasi matriks antara lain independent rescaling of rows and columns, bistochastization, dan log. Penerapan spectral biclustering bertujuan untuk mengidentifikasi potensi produksi komoditas hortikultura jenis sayuran di Indonesia. Metode normalisasi bistochastization menghasilkan bicluster optimal dengan nilai rataan mean squared residue terkecil sebesar 0,079593. Bicluster yang dihasilkan sebanyak 5 bicluster. Bicluster 1 dan 2 terdiri dari wilayah Papua dan Sulawesi Tenggara memiliki potensi produksi jenis tanaman sayuran mayoritas kategori rendah di antaranya kentang, bawang merah, bawang putih, dan bawang daun. Bicluster 3 dan 4 terdiri dari sebagian besar wilayah Kalimantan, Riau, Sumatera Selatan, Nusa Tenggara Timur, dan Maluku dengan potensi produksi mayoritas terkategori sedang di antaranya cabai rawit, tomat, buncis, labu siam, dan melinjo. Bicluster 5 merupakan wilayah Jawa, Bali, Nusa Tenggara Barat, sebagian besar wilayah Sumatera dan Sulawesi, serta Kalimantan Selatan. Bicluster 5 memiliki potensi produksi terkategori tinggi pada jenis sayuran sawi, kacang panjang, terung, ketimun, dan jengkol.
Keywords
Full Text:
PDFReferences
N. Trianasari, I. M. Sumertajaya, Erfiani, and I. W. Mangku, “Application of beta mixture distribution in data on gpa proportion and course scores at the mbti telkom university,” Commun. Math. Biol. Neurosci., vol. 2021, p. Article-ID, 2021, doi: 10.28919/cmbn/5391.
A. Tanay, R. Sharan, and R. Shamir, “Biclustering algorithms: A survey,” Handb. Comput. Mol. Biol., vol. 9, no. 1–20, pp. 122–124, 2005.
Y. Cheng and G. M. Church, “Biclustering of Expression Data,” in Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, ISMB 2000, 2000, pp. 93–103.
Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein, “Spectral biclustering of microarray data: Coclustering genes and conditions,” Genome Res., vol. 13, no. 4, pp. 703–716, 2003, doi: 10.1101/gr.648603.
N. Hikmah, I. M. Sumertajaya, and F. M. Afendi, “Pattern Recognition of Food Security in Indonesia Using Biclustering Plaid Model,” JTAM (Jurnal Teor. dan Apl. Mat., vol. 7, no. 4, pp. 1178–1192, 2023.
L. Marifni, I. M. Sumertajaya, and U. D. Syafitri, “Bicluster Analysis of Cheng and Church’s Algorithm to Identify Patterns of People’s Welfare in Indonesia,” JUITA J. Inform., vol. 11, no. 2, p. 261, 2023, doi: 10.30595/juita.v11i2.17446.
M. N. Aidi et al., “Province clustering based on the percentage of communicable disease using the BCBimax biclustering algorithm,” Geospat. Health, vol. 18, no. 2, 2023, doi: 10.4081/gh.2023.1202.
W. A. L. Ningsih, I. M. Sumertajaya, and A. Saefuddin, “Pattern Detection of Economic and Pandemic Vulnerability Index in Indonesia Using Bi-Cluster Analysis,” JUITA J. Inform., vol. 10, no. 2, pp. 273–282, 2022.
C. Wulandari, I. M. Sumertajaya, and M. N. Aidi, “Evaluation of Bicluster Analysis Results in Capture Fisheries Using the BCBimax Algorithm,” JUITA J. Inform., vol. 11, no. 1, pp. 57–66, 2023.
M. G. Silva, S. C. Madeira, and R. Henriques, “Water Consumption Pattern Analysis Using Biclustering: When, Why and How,” Water (Switzerland), vol. 14, no. 12, p. 1954, 2022, doi: 10.3390/w14121954.
E. N. Castanho, H. Aidos, and S. C. Madeira, “Biclustering fMRI time series: a comparative study,” BMC Bioinformatics, vol. 23, no. 1, pp. 1–30, 2022.
B. Pontes, R. Giráldez, and J. S. Aguilar-Ruiz, “Biclustering on expression data: A review,” J. Biomed. Inform., vol. 57, pp. 163–180, 2015, doi: 10.1016/j.jbi.2015.06.028.
G. Piscopo and M. Resta, “Applying spectral biclustering to mortality data,” Risks, vol. 5, no. 2, 2017, doi: 10.3390/risks5020024.
S. Shazlyn Milleana, S. Ismail, C. M. N. Siti Mariana, and A. Norhaiza, “An efficient method to improve the clustering performance using hybrid robust principal component analysis-spectral biclustering in rainfall patterns identification,” IAES Int. J. Artif. Intell., vol. 8, no. 3, pp. 237–243, 2019, doi: 10.11591/ijai.v8.i3.pp237-243.
S. C. Madeira and A. L. Oliveira, “Biclustering algorithms for biological data analysis: a survey,” IEEE/ACM Trans. Comput. Biol. Bioinforma., vol. 1, no. 1, pp. 24–45, 2004.
S. Sun and K. C. Das, “On the second largest normalized Laplacian eigenvalue of graphs,” Appl. Math. Comput., vol. 348, pp. 531–541, 2019.
Y.-R. Lee, J.-H. Lee, and C.-H. Jun, “Validation measures of bicluster solutions,” Ind. Eng. Manag. Syst., vol. 8, no. 2, pp. 101–108, 2009.
DOI: http://dx.doi.org/10.12962/limits.v21i3.21718
Refbacks
- There are currently no refbacks.
Jumlah Kunjungan:
Limits: Journal Mathematics and its Aplications by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/limits.