Ruang Barisan Orlicz dan Ruang Dualnya

Haryadi Haryadi, Burhanudin Arif Nurnugroho

Abstract


Di dalam makalah ini akan dikaji sifat-sifat ruang barisan Orlicz l. Selanjutnya, akan diselidiki karakteristik ruang dual ruang barisan Orlicz dan keterkaitannya dengan ruang barisan yang dibangun oleh pasangan fungsi Orlicz komplementernya. Untuk mencapai tujuan tersebut pada ruang barisan Orlicz l akan digunakan norma Luxemburg dan norma-. Dengan menggunakan kedua norma, karakterisasi ruang barisan Orlicz  berhasil ditelaah. Hasil-hasil yang lebih khusus ditelaah untuk fungsi Orlicz yang memenuhi kondisi-2. Secara umum, ruang dual ruang barisan Orlicz merupakan himpuan bagian ruang barisan yang dibangun oleh pasangan fungsi Orlicz komplementernya. Lebih lanjut, untuk fungsi Orlicz yang memenuhui kondisi-2, ruang dual ruang barisan Orlicz merupakan perumuman di ruang barisan lp dengan 1<p<∞.  

In this paper first, we examine some properties of the sequence Orlicz space .  Then, we examined the characteristics of the dual space of the sequence space. The relation of the dual space and the sequence generated by its complementary Orlicz function are examined. We use the Luxemburg norm and the -norm to investigate the space. Some properties of the space are found, and the results for the Orlicz function that satisfies -condition are given. Generally, the dual space is the subspace of the sequence generated by its complementary Orlicz function. For the Orlicz function that satisfies -condition, the dual space is generalization of the dual in the space   for  


Keywords


fungsi Orlicz; ruang barisan; ruang dual

Full Text:

PDF

References


K.P. Rahman dan R.A.B.M. Karim, "Weighted Cesaro sequence space and related matrix tranformation," Pure and Applied Mathematics Journal, pp. 237-241, 2015.

V.K. Bhardwaj dan S. Gupta, "Cesaro summable difference sequence space," Journal of Inequalities and Applications.

I. Bala, "On Cesaro Sequence Space defined by an Orlicz Function," Communications in Mathematics and Applications, vol. 3, no. 2, pp. 197-204, 2012.

H. Dutta, I.H. Jebril, B.S. Reddy, dan S. Ravikumar, "A Generalization of Modular Sequence Spaces by Cesaro Mean of Order One," Revista Notas de Matematica, vol. 7, no. 1, pp. 1-13, 2011.

N. Khusnussa'adah dan Supama, "Kelengkapan Ruang Barisan yang terdefinisi oleh Fungsi Orlicz," Eksakta: Jurnal Ilmu-ilmu MIPA, vol. 19, no. 1, pp. 1-14, 2019.

Haryadi, Supama dan A. Zulijanto, "The The beta-dual of the Cessaro sequence spaces defined on a generalized Orlicz space," in IOP Conf. Series: Journal of Physics: Conf. Series 893, Denpasar, 2017.

K. Raj, R. Anand, R. dan S. Pandoh, "Cesaro Orlicz Sequence Space and Their Kothe-Toeplitz Duals," Math. J. Okayama Univ., vol. 61, pp. 141-158, 2019.

N. Subramanian, S. Krishnamoorthy dan S. Balasubramanian, "The Matrix Transformation on Orlicz Space of X," Acta Universitatis Apulensis, vol. 32, pp. 7-15, 2012.

M. Nowak, "Linear Functional on Orlicz Sequences Spaces without Local Convexity," Internat, J. Math. & Math. Sci, vol. 15, no. 2, pp. 241-254, 1992.

M.A. Krasnosel'skii dan Y.B. Rutickii, Covex Function and Orlicz Space, Netherlands: P. Noordhoff Ltd., 1961.




DOI: http://dx.doi.org/10.12962/limits.v19i1.8114

Refbacks

  • There are currently no refbacks.


Jumlah Kunjungan:

Creative Commons License
Limits: Journal Mathematics and its Aplications by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/limits.