Pendekatan Numerik pada Model Penyebaran SARS dengan Method of Lines
Abstract
Keywords
Full Text:
PDFReferences
G. Chowell, P.W. Fenimore, M. A. Castillo-Grasow, and C. Castillo-Chavez, C., SARS outbreaks in Ontario, Hong Kong and Singapore the role of diagnosis and isolation as a control mechanism, Journal of Theoretical Biology, vol 224, pp. 1-8, 2003.
A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. Van Den Drissche, D. Grabielson, C. Browman, M. E. Alexander, S. Ardal, and B. M. Sahai, Modelling strategies for controlling SARS outbreaks, Journal Mathematics, vol 271, pp. 2223-2232, 2004.
A. Naheed, M. Singh, and D. Lucy, Numerical Study of SARS Epidemic Model with the Inclusion of Diffusion in the System, Applied Mathematics and Computation, vol 229, pp. 480-498, 2014.
W. E. Schiesser, and G. W. Griffths, A Compendium of Partial Differential Equation Models, Cambridge University Press: Cambridge, 2010.
J. Serradell, Deadly Diseases and Epidemic SARS Second Edition, Chelsea House Publishers: New York, 2010.
WHO, SARS: How a global epidemic was stopped, WHOpress: Western Pasific Region, 2006.
J. L. Xia, C. Yao, and G. K. Zhang, Analysis of Piecewise Compartmental Modelling for Epidemic of SARS in Guangdong, Chin. J. Health Stat, vol 20, pp.162-163, 2003.
DOI: http://dx.doi.org/10.12962/limits.v15i1.3489
Refbacks
Jumlah Kunjungan:
Limits: Journal Mathematics and its Aplications by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/limits.