Rumus Bilangan Reproduksi Dasar Covid-19 dengan Adanya Vaksinasi Dosis 1 dan 2

Aini Fitriyah

Abstract


This study aims to determine the basic reproduction number for Covid-19 with vaccination. The research method used is a literature study. The research step begins with construct a mathematical model of Covid-19 with vaccination, determining the basic reproduction formula and simulation. The mathematical model of Covid-19 is constructed by distinguishing susceptible subpopulations that have vaccinated doses 1 or 2, as well as infected subpopulations that have been vaccinated or not before. The model is . The analysis shows that the basic reproduction formula consists of several types of parameters. It is in accordance with simulation by using Matlab software. Simulation was taken based on Covid-19 and vaccination data in the Central Java Province. It shows that the greater the value of individual being vaccinated, the lower the basic reproduction number. This means that Covid-19 can disappear if more individuals get vaccinated against Covid-19.

Keywords


basic reproduction number, Covid-19 mathematical model, vaccination

Full Text:

PDF

References


Z. Ma and J. Li, Dinamical Modeling and Analysis of Epidemics. Singapore: World Scientific Publishing Co. Pte. Ltd., 2009.

A. P. Saputro, Matematika Untuk Kehidupan: Fungsi Eksponensial. Deepublish, 2019.

S. Sanche, Y. T. Lin, C. Xu, E. Romero-Severson, N. Hengartner, and R. Ke, “High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2,” Emerg. Infect. Dis., vol. 26, no. 7, p. 1470, 2020.

H. Najafimehr, K. Mohamed Ali, S. Safari, M. Yousefifard, and M. Hosseini, “Estimation of basic reproduction number for COVID-19 and the reasons for its differences,” Int. J. Clin. Pract., vol. 74, no. 8, pp. 6–7, 2020, doi: 10.1111/ijcp.13518.

R. Teguh, A. S. Sahay, and F. F. Adji, “Pemodelan Penyebaran Infeksi Covid-19 Di Kalimantan, 2020,” J. Teknol. Inf. J. Keilmuan dan Apl. Bid. Tek. Inform., vol. 14, no. 2, pp. 171–178, 2020, doi: 10.47111/jti.v14i2.1229.

Sifriyani and D. Rosadi, “Pemodelan Susceptible Infected Recovered ( Sir ) Untuk Estimasi Angka Reproduksi Covid-19 Di Kalimantan Timur Dan Samarinda,” J. Media Stat., no. July, pp. 1–13, 2020.

M. Fajar, “Estimation of COVID-19 reproductive number case of Indonesia ( estimasi angka reproduksi novel coronavirus ( COVID-19 ),” ResearchGate, no. March, pp. 1–7, 2020, doi: 10.13140/RG.2.2.32287.92328.

I. Ahmed, G. U. Modu, A. Yusuf, P. Kumam, and I. Yusuf, “A mathematical model of Coronavirus Disease (COVID-19) containing asymptomatic and symptomatic classes,” Results Phys., vol. 21, p. 103776, 2021, doi: 10.1016/j.rinp.2020.103776.

E. A. D. Kurniawan and A. Dianpermatasari, “Model Matematika SEAR dengan Memperhatikan Faktor Migrasi Terinfeksi untuk Kasus COVID-19 di Indonesia,” Limits J. Math. Its Appl., vol. 18, no. 2, pp. 142–153, 2021.

P. Wintachai and K. Prathom, “Stability analysis of SEIR model related to efficiency of vaccines for COVID-19 situation,” Heliyon, vol. 7, no. 4, p. e06812, 2021, doi: 10.1016/j.heliyon.2021.e06812.

M. Azizah, “Model Matematika Penyebaran Penyakit Coronavirus Disease 2019 (Covid-19) Dengan Vaksinasi, Isolasi Mandiri, Dan Karantina Di Rumah Sakit,” J. Sains dan Mat., vol. 2019, p. 97, 2020, [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/56206.

R. Ghostine, M. Gharamti, S. Hassrouny, and I. Hoteit, “Ghostine-2021-An extended seir model with vacc.pdf,” Mathematics, vol. 9, p. 636, 2021.

A. A. Sitinjak, “Penentuan Rumus Bilangan Berproduksi Dasar pada Model Matematika Covid-19 dari Model SIR yang Dimodifikasi,” J. Edumatsains, vol. 5, no. 2, pp. 203–210, 2021.

Y. Alimohamadi, M. Taghdir, and M. Sepandi, “Estimate of the basic reproduction number for COVID-19: a systematic review and meta-analysis,” J. Prev. Med. Public Heal., vol. 53, no. 3, p. 151, 2020.

“Vaksinasi Covid-19 Nasional,” Kementerian Kesehatan Republik Indonesia, 2021. https://vaksin.kemkes.go.id/#/vaccines (accessed Nov. 01, 2021).

“Tanggap Covid-19 Provinsi Jawa Tengah,” Pemerintah Provinsi Jawa Tengah, 2021. https://corona.jatengprov.go.id/ (accessed Nov. 02, 2021).

A. Simatupang, “Mengupas vaksin covid-19 dan nutrisi untuk lansia,” Repository.Uki.Ac.Id, pp. 1–21, 2021.

D. Junaedi, M. R. Arsyad, F. Salistia, and R. Moh., “Menguji Efektivitas Vaksinasi Covid-19 di Indonesia,” Reslaj Relig. Educ. Soc. Laa Roiba J., vol. 4, no. 1, pp. 158–167, 2022, doi: 10.47476/reslaj.v4i2.558.




DOI: http://dx.doi.org/10.12962/limits.v19i1.12249

Refbacks

  • There are currently no refbacks.


Jumlah Kunjungan:

Creative Commons License
Limits: Journal Mathematics and its Aplications by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/limits.