Some Known Results and an Open Problem of Tree - Wheel Graph Ramsey Numbers
Abstract
Keywords
Full Text:
PDFReferences
E.T. Baskoro and Surahmat, The Ramsey number of paths with respect to wheels, Discrete Mathematics 294 (2005) 275-277.
E. T. Baskoro, Surahmat, S.M. Nababan, and M. Miller, On Ramsey graph numbers for all trees versus W4 or W5, to appear in Graphs and Combinatorics (2002).
J. A. Bondy, Pancyclic graphs, J. of Combinatorial Theory Ser. B 11 (1971) 80-84.
S. Brandt, R.J. Faudree and W. Goddard, Weakly pancyclic graphs, J. of Graph Theory 27 (1998) 141-176.
S. A. Burr and P. Erd˝os, Generalization of a Ramsey-theoretic result of Chv´atal, J. of Graph Theory 7 (1983) 39-51.
V. Chv´atal and P. Erd˝os, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
V. Chv´atal and F. Harary, Generalized Ramsey theory for graphs, III. Small off-diagonal numbers, Pacific J. of Math. 41 (1972) 335-345.
V. Chv´atal, Tree-complete graph Ramsey numbers, Journal Graph Theory 7 (1977) 93.
G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
P. Erdos, The Art of Counting, (J.H. Spencer ed.), MIT Press, Cambridge, MA, (1973).
P. Erd¨os and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935) 463-470.
R. J. Faudree and R. H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Mathematics 8 (1974) 313-329.
L. Ger´encser and A. Gy´arfas, On Ramey-type problems, Ann. Univ.Sci. Budapest E¨otv¨os Sect. Math 10 (1967) 167-170.
R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey Theory, John Wiley and Sons, New York, (1990).
J.E. Graver and J. Yackel, Some Graph Theoretic Results Associated with Ramseys Theorem, Journal of Combinatorial Theory, 4 (1968), 125175.
A.M. Gleason and R.E. Greenwood, Combinatorial Relations and Chromatic Graphs, Canadian Journal of Mathematics, 7 (1955), 17.
A.M. Gleason, R.E. Greenwood and L.M. Kelly, The Putnam Mathematical Competition, Problems and solutions: 19381964, Math. Assoc. Amer., Washington, (1980), 365366.
U. Grenda and H. Harborth, The Ramsey number r(K3; K7 − e), Journal of Combinatorics, Information−System Sciences, 7 (1982), 166-169.
K. Godel, Uber formal unentscheidbare Satze der Principia Mathematica und verwander Systeme I, Monatshefte fur Mathematic und Physik, 38 (1931), 173198.
(A. Hajnal, R. Rado and V.T. Sos eds.), Infinite and finite Sets, North Holland, New York, (1975).
S. P. Radziszowski, Small Ramsey numbers, Electronic J. of Combinatorics (2004) DS1.8.
S. P. Radziszowski and J. Xia, Paths, cycles and wheels without antitriangles, Australasian J. of Combinatorics 9 (1994) 221-232.
F.P. Ramsey, On a problem of formal logic,Proc. London Math. Soc. 30 (1930) 264-286
V. Rosta, On a Ramsey type problem of J.A. Bondy and P. Erd˝os, I & II, J. of Combinatorial Theory (B) 15 (1973) 94-120.
I. Schur, Uber die kongruenz xm +ym = zm (mod p), Jber. Deutsch Math. Verein., 25 (1916), 114116
E. H. Stipp, Bounds for Ramsey numbers in multipartite graphs, Preprint (2000).
Surahmat and E.T. Baskoro, On the Ramsey number of a path or a star versus W4 or W5, Proceedings of the 12-th Australasian Workshop on Combinatorial Algorithms, Bandung, Indonesia, July 14-17 (2001) 174-179.
Surahmat, E.T. Baskoro and H.J. Broersma, The Ramsey number of large star-like trees versus large odd wheels, Memorandum, 1621, University of Twente The Netherlands, (2002)
DOI: http://dx.doi.org/10.12962/j1829605X.v2i2.1371
Refbacks
- There are currently no refbacks.
Jumlah Kunjungan:
Limits: Journal Mathematics and its Aplications by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/limits.