Multi Criteria Decision Making menggunakan Operator Group Generalized Interval Value Pythagorean Fuzzy

Nurul Faqiyyatur Rokhmah, Noor Hidayat, Abdul Rouf Alghofari

Abstract


Multi Criteria Decision Making (MCDM) adalah proses penentuan solusi terbaik dalam suatu masalah berdasarkan kriteria yang telah ditentukan. Dalam berbagai kasus, pengambil keputusan sulit untuk menyatakan pendapatnya dalam angka yang tegas. Oleh karena itu, penggunaan bilangan fuzzy dianggap lebih efisien. Salah satu bilangan fuzzy yang digunakan dalam kasus MCDM adalah Interval Value Pythagorean Fuzzy Number (IVPFN). Informasi fuzzy pada kasus MCDM dinyatakan dalam IVPFN. Akurasi informasi fuzzy dinilai oleh Group Generalized Parameter (GGP) yang dinyatakan dengan cara yang sama seperti informasi fuzzy, yaitu dengan IVPFN. Informasi fuzzy dan GGP selanjutnya diagregasi menggunakan operator Group Generalized Interval Value Pythagorean Fuzzy Weighted Average (GGIVPFWA) dan Group Generalized Interval Value Pythagorean Fuzzy Weighted Geometric (GGIVPFWG). Kedua operator tersebut bertujuan untuk menemukan alternatif terbaik yang dapat dipilih. Hasil keputusan dari operator GGIVPFWA dan GGIVPFWG selanjutnya diverifikasi menggunakan weighted similarity measure dan menunjukkan bahwa kedua operator tersebut dapat menyelesaikan masalah MCDM secara efektif dan akurat


Keywords


multi criteria decision making; interval value Pythagorean fuzzy; group generalized parameter; weighted similarity measure

Full Text:

PDF

References


L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, Jun. 1965, doi: 10.1016/S0019-9958(65)90241-X.

K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets Syst., vol. 20, no. 1, pp. 87–96, 1986, doi: 10.1016/S0165-0114(86)80034-3.

K. Atanassov and G. Gargov, “Interval valued intuitionistic fuzzy sets,” Fuzzy Sets Syst., vol. 31, no. 3, pp. 343–349, 1989, doi: 10.1016/0165-0114(89)90205-4.

R. R. Yager and A. M. Abbasov, “Pythagorean membership grades, complex numbers, and decision making,” Int. J. Intell. Syst., vol. 28, no. 5, pp. 436–452, May 2013, doi: 10.1002/int.21584.

X. Peng and Y. Yang, “Some Results for Pythagorean Fuzzy Sets,” Int. J. Intell. Syst., vol. 30, no. 11, pp. 1133–1160, Nov. 2015, doi: 10.1002/int.21738.

M. Agarwal, K. K. Biswas, and M. Hanmandlu, “Generalized intuitionistic fuzzy soft sets with applications in decision-making,” Appl. Soft Comput. J., vol. 13, no. 8, pp. 3552–3566, 2013, doi: 10.1016/j.asoc.2013.03.015.

H. Garg, “A New Generalized Pythagorean Fuzzy Information Aggregation Using Einstein Operations and Its Application to Decision Making,” Int. J. Intell. Syst., vol. 31, no. 9, pp. 886–920, Sep. 2016, doi: 10.1002/int.21809.

H. Garg, “Generalized Pythagorean Fuzzy Geometric Aggregation Operators Using Einstein t-Norm and t-Conorm for Multicriteria Decision-Making Process,” Int. J. Intell. Syst., vol. 32, no. 6, pp. 597–630, Jun. 2017, doi: 10.1002/int.21860.

K. Rahman, S. Abdullah, M. Shakeel, M. S. Ali Khan, and M. Ullah, “Interval-valued Pythagorean fuzzy geometric aggregation operators and their application to group decision making problem,” Cogent Math., vol. 4, no. 1, p. 1338638, 2017, doi: 10.1080/23311835.2017.1338638.

K. Rahman, A. Ali, and M. S. A. Khan, “Some Interval-Valued Pythagorean Fuzzy Weighted Averaging Aggregation Operators and Their Application to Multiple Attribute Decision Making,” Punjab Univ. J. Math., vol. 50, no. 2, pp. 113–129, 2018.

J. Feng, Q. Zhang, and J. Hu, “Group Generalized Pythagorean Fuzzy Aggregation Operators and Their Application in Decision Making,” IEEE Access, vol. 8, pp. 138004–138020, 2020, doi: 10.1109/ACCESS.2020.3010718.

Q. Zhang, J. Hu, J. Feng, A. Liu, and Y. Li, “New Similarity Measures of Pythagorean Fuzzy Sets and Their Applications,” IEEE Access, vol. 7, pp. 138192–138202, 2019, doi: 10.1109/ACCESS.2019.2942766.

H. Li, Y. Cao, L. Su, and Q. Xia, “An interval pythagorean fuzzy multi-criteria decision making method based on similarity measures and connection numbers,” Inf., vol. 10, no. 2, pp. 1–18, 2019, doi: 10.3390/info10020080.

R. E. Moore, Methods and Applications of Interval Analysis. Society for Industrial and Applied Mathematics, 1979.

X. Peng and Y. Yang, “Fundamental Properties of Interval-Valued Pythagorean Fuzzy Aggregation Operators,” Int. J. Intell. Syst., vol. 31, no. 5, pp. 444–487, May 2016, doi: 10.1002/int.21790.




DOI: http://dx.doi.org/10.12962/limits.v18i2.9480

Refbacks

  • There are currently no refbacks.


Jumlah Kunjungan:

Creative Commons License
Limits: Journal Mathematics and its Aplications by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/limits.