Analysis of The Effectiveness of Household Scale Smart Window Panel as a New Renewable Energy Source Using PVsyst Software

M Aldi Nugroho, Salsabila Aminatun Muthmainnah, M. Akbar Miftahuzaman, Yohanes Maruli Arga Septianus, Muhammad Irsyad Ivana Akmal, Muhammad Sholeh, Vincentius Glorio Fransduard Gospely Goldant, Cahyaning Hanum Pertiwi


Increasing electrical energy consumption causes problems because it produces greenhouse gas emissions. The problem is that the fuel used so far is not renewable. Carbon emissions can trigger global warming. Global warming causes the temperature on earth to increase, causing icebergs in the polar regions to melt and sea levels to rise. Efforts can be made to minimize this problem by transitioning to alternative energy, such as solar panels. Using solar panels as an energy source has an excellent opportunity to be implemented because Indonesia gets sunlight throughout the year. However, solar panels have drawbacks, such as surfaces that are difficult to clean, depending on location and weather conditions, and their installation requires a large area. Therefore, this research was conducted by designing smart window panels that are easy to apply on a household scale so that their effectiveness is known when implemented. The method used in this study is a simulation method using the PVsyst software. The simulation was carried out with a variable angle of installation of the smart window panel, 0°,30°,45°,60°, and 90°. The results showed that the best results were obtained from modules with an installation angle of 90° because the EfrGrid value was 19168 Kw/year and E_Solar was 104.28 Kw/year. Increasing the number of modules used can be done by using suitable inverters so that optimizing the use of smart window panels on the household scale can be done to reduce carbon emissions and achieve energy security in Indonesia.


Efrgrid, E_Solar, Pvsyst, Mounting Angle Seismic, Smart Window Panel

Full Text:



D. Arinaldo, E. Mursanti, and F. Tumiwa, “Implikasi paris agreement terhadap masa depan Pembangkit Listrik Tenaga Uap (PLTU) Batubara di Indonesia,” Accel. Low-Carbon Energy Transit., vol. 96, no. 3, p. 445, 2019.

A. Irawan, “Potensi Cadangan dan Serapan Karbon oleh Padang Lamun di bagian Utara dan Timur Pulau Bintan The Carbon Stock and Potential Uptake of Seagrass Beds in the Northern and Eastern Part of Bintan Island Abstrak Pendahuluan,” vol. 2, no. 3, pp. 35–48, 2017.

R. Ginting and M. Ramadhan, “Designing carbon dioxide absorbent and detector products using the Quality Function Deployment (QFD) method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1041, no. 1, p. 012041, 2021, doi: 10.1088/1757-899x/1041/1/012041.

S. Thamrin et al., Pedoman Pelaksanaan Rencana Aksi Penurunan Emisi Gas Rumah Kaca. 2011.

F. G. S. Giucastro, “Smart windows of the future . The introduction of graphene in transparent photovoltaic,” no. June 2017, 2018.

I. Anaphalia Farahdiba, D. Krisdiyanto, and S. dan Karmanto, “Pemanfaatan Ekstrak Daun Kelor (Moringa oleifera .l.) Sebagai Dye Sensitizeruntukdye Sensitized Solar Cell (DSSC),” online) Indones. J. Mater. Chem. IJMC, vol. 3, no. 1, pp. 28–32, 2020.

P. Caprioglio et al., “Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction,” Science (80-. )., vol. 370, no. December, pp. 1300–1309, 2020.

A. A. F. Husain, W. Z. W. Hasan, S. Shafie, M. N. Hamidon, and S. S. Pandey, “A review of transparent solar photovoltaic technologies,” Renew. Sustain. Energy Rev., vol. 94, no. June, pp. 779–791, 2018, doi: 10.1016/j.rser.2018.06.031.

H. Wang et al., “Research on the Development of Flexible Solar Cells,” Chinese J. Eng. Sci., vol. 20, no. 3, p. 66, 2018, doi: 10.15302/j-sscae-2018.03.010.

T. Jakhongir Turakul Ugli, “The Importance of Alternative Solar Energy Sources and the Advantages and Disadvantages of Using Solar Panels in this Process,” Am. J. Softw. Eng. Appl., vol. 8, no. 1, p. 32, 2019, doi: 10.11648/j.ajsea.20190801.14.

D. S. N. Pasra, “Efisiensi Panel Surya Kapasitas 100 Wp Akibat Pengaruh Suhu dan Kecepatan Angin,” J. Ilm. Sutet, vol. 11, no. 2, pp. 71–80, 2021.

M. Kumar Panjwani and G. Bukshsh Narejo, “Effect of Humidity on the Efficiency of Solar Cell (photovoltaic),” Int. J. Eng. Res. Gen. Sci., vol. 2, no. 4, pp. 499–503, 2014, [Online]. Available:

R. Tariq Ahmedhamdi, H. A. Kazem, M. Tariq Chaichan, R. T. A Hamdi, S. A. Hafad, and M. T. Chaichan, “Humidity impact on photovoltaic cells performance: A review Solar panel and cell technologies View project Humidity impact on photovoltaic cells performance: A review,” Www.Ijrerd.Com ||, vol. 03, no. 11, pp. 27–37, 2018, [Online]. Available:

K. T. Mauriraya, R. Afrianda, A. Fernandes, A. Makkulau, D. P. Sari, and N. Kurniasih, “Edukasi Pemanfaatan PLTS untuk Penerangan Jalan Umum Di Desa Cilatak Kecamatan Ciomas Kabupaten Serang Banten,” Terang, vol. 3, no. 1, pp. 92–99, 2020, doi: 10.33322/terang.v3i1.535.

M. Fathi, M. Abderrezek, and F. Djahli, “Experimentations on luminescent glazing for solar electricity generation in buildings,” Optik (Stuttg)., vol. 148, pp. 14–27, 2017, doi: 10.1016/j.ijleo.2017.08.127.

M. M. Potter et al., “Autonomous Light Management in Flexible Photoelectrochromic Films Integrating High Performance Silicon Solar Microcells,” ACS Appl. Energy Mater., vol. 3, no. 2, pp. 1540–1551, 2020, doi: 10.1021/acsaem.9b01987.

S. H. Abu-Bakar et al., “Performance analysis of a novel rotationally asymmetrical compound parabolic concentrator,” Appl. Energy, vol. 154, no. May, pp. 221–231, 2015, doi: 10.1016/j.apenergy.2015.04.122.

L. M. Huang, C. W. Hu, H. C. Liu, C. Y. Hsu, C. H. Chen, and K. C. Ho, “Photovoltaic electrochromic device for solar cell module and self-powered smart glass applications,” Sol. Energy Mater. Sol. Cells, vol. 99, pp. 154–159, 2012, doi: 10.1016/j.solmat.2011.03.036.

T. K. Mallick and P. C. Eames, “Design and fabrication of low concentrating second generation PRIDE concentrator,” Sol. Energy Mater. Sol. Cells, vol. 91, no. 7, pp. 597–608, 2007, doi: 10.1016/j.solmat.2006.11.016.

Y. Niu et al., “Energy Saving and Energy Generation Smart Window with Active Control and Antifreezing Functions,” Adv. Sci., vol. 9, no. 6, pp. 1–9, 2022, doi: 10.1002/advs.202105184.

S. Das, P. Sudhagar, Y. S. Kang, and W. Choi, “Graphene synthesis and application for solar cells,” J. Mater. Res., vol. 29, no. 3, pp. 299–319, 2014, doi: 10.1557/jmr.2013.297.

M. A. A. Mamun, M. M. Islam, M. Hasanuzzaman, and J. Selvaraj, “Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation,” Energy Built Environ., vol. 3, no. 3, pp. 278–290, 2022, doi: 10.1016/j.enbenv.2021.02.001.

A. A. Zaki and A. A. El-Amin, “Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell,” Opt. Laser Technol., vol. 97, pp. 71–76, 2017, doi: 10.1016/j.optlastec.2017.06.009.



  • There are currently no refbacks.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License. IPTEK The Journal of Engineering published by Pusat Publikasi Ilmiah, Institut Teknologi Sepuluh Nopember


Please contact us for order or further information at: email: iptek.joe[at] Fax/Telp: 031 5992945. Editorial Office Address: Pusat Riset Building 6th floor, ITS Campus, Sukolilo, Surabaya 60111, Indonesia.