Effect of Flow Rate NaOH on CO₂ Absorption Efficiency Using a Column Tray Absorber

Rizal Arifin, Nurul Faizah, Ardista Izdhihar Kaloka, Anisa Fatma Aulia, Gladys Sukma Thufailah, Muhammad Adnan Syukur

Abstract


CO₂ in industrial gas streams reduces process efficiency, corrodes equipment, and affects product quality. Additionally, CO₂ emissions contribute to climate change and global warming. To mitigate these effects, CO₂ removal through absorption is essential. Absorption involves contacting a gas mixture with a liquid absorbent to dissolve the gas component. This study examines the effect of CO₂ flow rate (V) and NaOH flow rate (L) on CO₂ absorption efficiency. The experiment involved preparing 33 liters of 0.1N NaOH and 250 ml of 0.1N HCl, followed by solution standardization using methyl orange. CO₂ was introduced through valve V-4 while NaOH was pumped into the absorption column. Samples were taken after steady state was reached, and titration with 0.1N HCl determined residual NaOH concentration. Flow rate variations of 1, 3, 5, 7, and 9 L/min were tested. Results align with literature, indicating that as CO₂ flow rate increases, NaOH flow rate also rises. However, the L/V ratio and absorbed CO₂ amount decrease due to reduced contact time, lowering absorption efficiency. This study highlights the importance of optimizing flow rates to enhance CO₂ capture.

Keywords


Absorption; Carbon dioxide; Separation; Sodium Hydroxide

Full Text:

PDF

References


D. Labiba and W. Pradoto, “Sebaran Emisi CO2 Dan Implikasinya Terhadap Penataan Ruang Area Industri di Kabupaten Kendal,” Jurnal Pengembangan Kota, vol. 6, no. 2, p. 164, 2018.

M. A. Fanani, D. R. Nurmaningsih, and S. Nengse, “Meninjau Efisiensi Penurunan Kadar CO2 oleh Living Moss Wall: Studi tentang Potensi dan Tantangan dalam Mengatasi Pencemaran Udara di dalam Ruangan,” Dampak, vol. 20, no. 2, p. 55, 2023.

Y. Kurniati and L. Qomariyah, “Prediksi Solubilitas (Absorpsi) Gas CO 2 dalam Larutan Potasium Karbonat (K 2 CO 3) dan MDEA Menggunakan Simulasi ASPEN-K 2 CO 3-MDEA-H 2 O system, electrolyte NRTL model, vapor-liquid equilibrium,” vol. 2, no. 1, pp. 1–10, 2018.

Y. Hartanto, A. Putranto, S. Cynthia, K. Kunci, and: Co2, “Simulasi Absorpsi Gas CO2 dengan Pelarut Dietanolamina (Dea) Menggunakan Simulator Aspen Hysys,” 2017.

A. Kurniawan, M. Fatimura, and R. Masriatini, “Pengaruh Variasi Laju Alir Gas Alam Terhadap Absorbsi Gas CO2 dan Waktu Pembakaran Gas Alam.”

O. I. Maile, E. Muzenda, and H. Tesfagiorgis, “Chemical Absorption of Carbon Dioxide in Biogas Purification,” in Procedia Manufacturing, Elsevier B.V., pp. 639–646, 2017.

S. Ardhiany and K. Kunci, “Proses Absorbsi Gas CO 2 dalam Biogas menggunakan Alat Absorber Tipe Packing dengan Analisa Pengaruh Laju Alir Absorben NaOH,” 2018.

G. da Cunha, J. de Medeiros, and O. Araújo, “Carbon Capture from CO2-Rich Natural Gas via Gas-Liquid Membrane Contactors with Aqueous-Amine Solvents: A Review,” Gases, vol. 2, no. 3, pp. 98–133, Sep. 2022.

R. Robiah et al., “Kajian Pengaruh Laju Alir NaOH Dan Waktu Kontak Terhadap Absorpsi Gas CO2 Menggunakan Alat Absorber Tipe Sieve Tray,” 2021.

A. M. Nor Azira and A. Umi Aisah, “Purification of biohydrogen from fermentation gas mixture using two-stage chemical absorption,” in E3S Web of Conferences, EDP Sciences, Apr. 2019.

A. Chalim and E. Novika Dewi, “Prosiding Seminar Nasional Kimia dan Pembelajarannya (SNKP) 2019 Malang,” 2019.

J. Xu, “Research progress in CO 2 capture technology,” 2023.

A. S. Farooqi, R. M. Ramli, S. S. M. Lock, N. Hussein, M. Z. Shahid, and A. S. Farooqi, “Simulation of Natural Gas Treatment for Acid Gas Removal Using the Ternary Blend of MDEA, AEEA, and NMP,” Sustainability (Switzerland), vol. 14, no. 17, Sep. 2022.

K. Fu, P. Zhang, and D. Fu, “Absorption capacity and CO2 removal efficiency in tray tower by using 2-(ethylamino) ethanol activated 3-(dimethylamino)propan-1-ol aqueous solution,” Journal of Chemical Thermodynamics, vol. 139, Dec. 2019.

A. H. Lahuri and M. A. Yarmo, “Study of CO2Adsorption Time for Carbonate Species and Linear CO2Formations onto Bimetallic CaO/Fe2O3by Infrared Spectroscopy,” Sains Malays, vol. 51, no. 2, pp. 507–517, Feb. 2022.

M. Ahmadi and S. H. Seyedin, “Investigation of NaOH Properties, Production and Sale Mark in the world,” 2019.

R. Rahmawati and M. Tejamaya, “Chemical Dermal Exposure Risk Assessment in the Water Treatment Plant of Fertilizer Industry,” Indonesian Journal of Occupational Safety and Health, vol. 13, no. 2, pp. 241–251, Aug. 2024.

A. U. Istiqomah, F. Rahmawati, and K. D. Nugrahaningtyas, “Replacing Soda Ash (NaOH) With Kalium Hydroxyde (KOH) In Destilation Of Binary Ethanol-Water Mixture,” Alchemy Jurnal Penelitian Kimia, vol. 12, no. 2, p. 179, Sep. 2016.

K. Asemave and A. S. Shiebee, “Comparative Analysis of Curcuma longa Rhizome and Tectona grandis Leaves Extracts as Green Indicators versus some Synthetic Indictors in Acid-Base Titration,” Journal of Engineering Research and Sciences, vol. 1, no. 1, pp. 51–55, Feb. 2022.

N. Siraj and A. Hakim, “Steady-State and Dynamic Simulations of Gas Absorption Column Using MATLAB and SIMULINK Steady-State and Dynamic Simulations of Gas Absorption Column Using MATLAB and SIMULINK Introduction 2 Process description 3 Absorption tower model development 4 Results and discussion 5 Conclusion and recommendation,” 2018.

A. Durgadevi and S. Pushpavanam, “An experimental and theoretical investigation of pure carbon dioxide absorption in aqueous sodium hydroxide in glass millichannels,” Journal of CO2 Utilization, vol. 26, pp. 133–142, Jul. 2018.

H. Luo and H. Kanoh, “Fundamentals in CO2 capture of Na2CO3 under a moist condition,” Journal of Energy Chemistry, vol. 26, no. 5, pp. 972–983, Nov. 2017.

L. Trisnaliani et al., “The Effect of flowrate and NaOH Concentration to CO2 Reduction in Biogas Products Using Absorber,” in Journal of Physics: Conference Series, Institute of Physics Publishing, May 2020.

Y. Tavan and S. H. Hosseini, “A novel rate of the reaction between NaOH with CO2 at low temperature in spray dryer,” Petroleum, vol. 3, no. 1, pp. 51–55, Mar. 2017.

C. Yao, K. Zhu, Y. Liu, H. Liu, F. Jiao, and G. Chen, “Intensified CO2 absorption in a microchannel reactor under elevated pressures,” Chemical Engineering Journal, vol. 319, pp. 179–190, 2017.

A. Tollkötter and N. Kockmann, “Absorption and chemisorption of small levitated single bubbles in aqueous solutions,” Processes, vol. 2, no. 1, pp. 200–215, Mar. 2014.

M. Gunnarsson, D. Bernin, Å. Östlund, and M. Hasani, “The CO2 capturing ability of cellulose dissolved in NaOH(aq) at low temperature,” Green Chemistry, vol. 20, no. 14, pp. 3279–3286, 2018.

F. I. Dinul, H. Nurdin, D. Rahmadiawan, Nasruddin, I. A. Laghari, and T. Elshaarani, “Comparison of NaOH and Na2CO3 as absorbents for CO2 absorption in carbon capture and storage technology,” Journal of Engineering Researcher and Lecturer, vol. 2, no. 1, pp. 28–34, Apr. 2023.

S. Setiadi, D. Supramono, and N. Istiqomah, “Pengaruh konfigurasi liquid jet flow kolom gelembung terhadap kemampuan absorpsi gas karbondioksida,” Jurnal Teknik Kimia Indonesia, vol. 9, no. 2, p. 42, Oct. 2018.

L. Li et al., “Research on integrated CO2 absorption-mineralization and regeneration of absorbent process,” Energy, vol. 222, May 2021.

F. M. Baena-Moreno, M. Rodríguez-Galán, F. Vega, T. R. Reina, L. F. Vilches, and B. Navarrete, “Regeneration of sodium hydroxide from a biogas upgrading unit through the synthesis of precipitated calcium carbonate: An experimental influence study of reaction parameters,” Processes, vol. 6, no. 11, Oct. 2018.

V. Rajiman, N. A. H. Hairul, and A. M. Shariff, “Effect of CO2 concentration and liquid to gas ratio on CO2 absorption from simulated biogas using monoethanolamine solution,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing Ltd, Dec. 2020.

C. Dinca, N. Slavu, and A. Badea, “Benchmarking of the pre/post-combustion chemical absorption for the CO2 capture,” Journal of the Energy Institute, vol. 91, no. 3, pp. 445–456, Jun. 2018.

R. Sutanto, A. Mulyanto, M. Wirawan, I. B. Alit, and N. Nurchayati, “Adsorbsi gas karbon dioksida dalam biogas dengan menggunakan endapan batu kapur,” Dinamika Teknik Mesin, vol. 9, no. 2, p. 133, Jul. 2019.

L. Kavoshi, A. Rahimi, and M. S. Hatamipour, “Experimental Study of Chemical Absorption of CO2 in a Bench-Scale Spray Dryer Absorber,” Gas Processing Journal, vol. 6, no. 1, pp. 21–28, 2018.

A. Constantinou, S. Barrass, and A. Gavriilidis, “CO2 absorption in flat membrane microstructured contactors of different wettability using aqueous solution of NaOH,” Green Processing and Synthesis, vol. 7, no. 6, pp. 471–476, Dec. 2018.

L. Zhang, G. Hu, and X. T. Bi, “Two-phase flow in parallel channels: Mal-distribution, hysteresis and mitigation strategies,” Chem Eng Sci, vol. 247, Jan. 2022.

S. Djayanti, B. Besar, T. Pencegahan, and P. Industri, “Optimalisasi Penurunan Konsentrasi SO 2 Emisi Menggunakan Larutan NAOH pada Menara Absorber.”

L. Prentza, I. P. Koronaki, and M. T. Nitsas, “Investigating the performance and thermodynamic efficiency of CO2 reactive absorption – A solvent comparison study,” Thermal Science and Engineering Progress, vol. 7, pp. 33–44, Sep. 2018.




DOI: http://dx.doi.org/10.12962%2Fj23378557.v11i1.a22713

Refbacks

  • There are currently no refbacks.


Yukbola

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License. IPTEK The Journal of Engineering published by Pusat Publikasi Ilmiah, Institut Teknologi Sepuluh Nopember

 

Please contact us for order or further information at: email: iptek.joe[at]gmail.com Fax/Telp: 031 5992945. Editorial Office Address: Pusat Riset Building 6th floor, ITS Campus, Sukolilo, Surabaya 60111, Indonesia.

koi800

Mawar500