Hydroxyapatite Based Material: Natural Resources, Synthesis Methods, 3D Print Filament Fabrication, and Filament Filler

Lulu Sekar Taji, Deden Eko Wiyono, Achmad Dwitama Karisma, Agus Surono, Eva Oktavia Ningrum

Abstract


Hydroxyapatite is a biomaterial that has been recognized in terms of hard tissue engineering due to its similarity in composition to bioapatite. Moreover, abundant resources and diverse synthesis methods make hydroxyapatite easy to produce. The application in terms of 3D print-based network engineering is also being intensively explored due to hydroxyapatite scaffold fabrication process flexibility. In this review, various hydroxyapatite from natural sources, synthesis methods, hydroxyapatite-based 3D print filament fabrication techniques, as well as fillers used in the production of filaments are discussed.


Keywords


Hydroxyapatite; Natural resources; Synthesis; 3D print filament; Filler

Full Text:

PDF

References


P. Arokiasamy Et Al., “Synthesis Methods Of Hydroxyapatite From Natural Sources: A Review,” Ceramics International, Mar. 2022, Doi: 10.1016/J.Ceramint.2022.03.064.

N. A. S. Mohd Pu’ad, P. Koshy, H. Z. Abdullah, M. I. Idris, And T. C. Lee, “Syntheses Of Hydroxyapatite From Natural Sources,” Heliyon, Vol. 5, No. 5. Elsevier Ltd, May 01, 2019. Doi: 10.1016/J.Heliyon.2019.E01588.

X. Liu, K. Wu, L. Gao, L. Wang, And X. Shi, “Biomaterial Strategies For The Application Of Reproductive Tissue Engineering,” Bioactive Materials, Vol. 14. Keai Communications Co., Pp. 86–96, Aug. 01, 2022. Doi: 10.1016/J.Bioactmat.2021.11.023.

M. Kaur And K. Singh, “Review On Titanium And Titanium Based Alloys As Biomaterials For Orthopaedic Applications,” Materials Science And Engineering C, Vol. 102. Elsevier Ltd, Pp. 844–862, Sep. 01, 2019. Doi: 10.1016/J.Msec.2019.04.064.

A. Yelten-Yilmaz And S. Yilmaz, “Wet Chemical Precipitation Synthesis Of Hydroxyapatite (Ha) Powders,” Ceramics International, Vol. 44, No. 8, Pp. 9703–9710, Jun. 2018, Doi: 10.1016/J.Ceramint.2018.02.201.

M. A. Ackun-Farmmer, C. T. Overby, B. E. Haws, R. Choe, And D. S. W. Benoit, “Biomaterials For Orthopedic Diagnostics And Theranostics,” Current Opinion In Biomedical Engineering, Vol. 19. Elsevier B.V., Sep. 01, 2021. Doi: 10.1016/J.Cobme.2021.100308.

E. Bahremandi-Toloue, Z. Mohammadalizadeh, S. Mukherjee, And S. Karbasi, “Incorporation Of Inorganic Bioceramics Into Electrospun Scaffolds For Tissue Engineering Applications: A Review,” Ceramics International, Vol. 48, No. 7. Elsevier Ltd, Pp. 8803–8837, Apr. 01, 2022. Doi: 10.1016/J.Ceramint.2021.12.125.

S. Punj, J. Singh, And K. Singh, “Ceramic Biomaterials: Properties, State Of The Art And Future Prospectives,” Ceramics International, Vol. 47, No. 20. Elsevier Ltd, Pp. 28059–28074, Oct. 15, 2021. Doi: 10.1016/J.Ceramint.2021.06.238.

S. Davaie, T. Hooshmand, And S. Ansarifard, “Different Types Of Bioceramics As Dental Pulp Capping Materials: A Systematic Review,” Ceramics International. Elsevier Ltd, 2021. Doi: 10.1016/J.Ceramint.2021.04.193.

G. Daculsi, “History Of Development And Use Of The Bioceramics And Biocomposites,” In Handbook Of Bioceramics And Biocomposites, Springer International Publishing, 2016, Pp. 3–22. Doi: 10.1007/978-3-319-12460-5_2.

S. Ardhy, Gunawarman, J. Affi, And Y. Yetri, “Crack Analysis On Ti-6al-4v Eli Coated With Commercial Hydroxyapatite For Implant Material: Literature Review,” Iop Conference Series: Materials Science And Engineering, Vol. 1041, No. 1, P. 012057, Jan. 2021, Doi: 10.1088/1757-899x/1041/1/012057.

A. A. Hendi, “Hydroxyapatite Based Nanocomposite Ceramics,” Journal Of Alloys And Compounds, Vol. 712, Pp. 147–151, 2017, Doi: 10.1016/J.Jallcom.2017.04.021.

S. E. Cahyaningrum, N. Herdyastuty, B. Devina, And D. Supangat, “Synthesis And Characterization Of Hydroxyapatite Powder By Wet Precipitation Method,” In Iop Conference Series: Materials Science And Engineering, Feb. 2018, Vol. 299, No. 1. Doi: 10.1088/1757-899x/299/1/012039.

Y. Rizkayanti And Y. Yusuf, “Optimization Of The Temperature Synthesis Of Hydroxyapatite From Indonesian Crab Shells,” 2019.

S. E. Cahyaningrum, N. Herdyastuty, F. Wiana, B. Devina, And D. Supangat, “Synthesis Of Hydroxyapatite From Crab Shell (Scylla Serrata) Waste With Different Methods Added Phosphate,” In Proceedings Of The Seminar Nasional Kimia, 2018, Pp. 67–69.

N. Mustafa, M. H. I. Ibrahim, R. Asmawi, And A. M. Amin, “Hydroxyapatite Extracted From Waste Fish Bones And Scales Via Calcination Method,” Applied Mechanics And Materials, Vol. 773–774, Pp. 287–290, Jul. 2015, Doi: 10.4028/Www.Scientific.Net/Amm.773-774.287.

L. Anggresani, Y. N. Sari, And R. Rahmadevi, “Hydroxyapatite (Hap) From Tenggiri Fish Bones As Abrasive Material In Toothpaste Formula,” Jurnal Kimia Valensi, Vol. 7, No. 1, Pp. 1–9, Jun. 2021, Doi: 10.15408/Jkv.V7i1.19165.

A. Pal, S. Paul, A. R. Choudhury, V. K. Balla, M. Das, And A. Sinha, “Synthesis Of Hydroxyapatite From Lates Calcarifer Fish Bone For Biomedical Applications,” Materials Letters, Vol. 203, Pp. 89–92, Sep. 2017, Doi: 10.1016/J.Matlet.2017.05.103.

M. R. Hasan, N. S. Mohd Yasin, M. S. Mohd Ghazali, And N. F. Mohtar, “Proximate And Morphological Characteristics Of Nano Hydroxyapatite (Nano Hap) Extracted From Fish Bone,” Journal Of Sustainability Science And Management, Vol. 15, No. 8, Pp. 9–21, Dec. 2020, Doi: 10.46754/Jssm.2020.12.002.

H. Faridi And A. Arabhosseini, “Application Of Eggshell Wastes As Valuable And Utilizable Products: A Review,” Research In Agricultural Engineering, Vol. 64, No. 2, Pp. 104–114, 2018, Doi: 10.17221/6/2017-Rae.

K. W. Goh Et Al., “Effect Of Ph On The Properties Of Eggshell-Derived Hydroxyapatite Bioceramic Synthesized By Wet Chemical Method Assisted By Microwave Irradiation,” Ceramics International, Vol. 47, No. 7, Pp. 8879–8887, Apr. 2021, Doi: 10.1016/J.Ceramint.2020.12.009.

G. Gergely Et Al., “Preparation And Characterization Of Hydroxyapatite From Eggshell,” Ceramics International, Vol. 36, No. 2, Pp. 803–806, Mar. 2010, Doi: 10.1016/J.Ceramint.2009.09.020.

B. Chaudhuri, B. Mondal, D. K. Modak, K. Pramanik, And B. K. Chaudhuri, “Preparation And Characterization Of Nanocrystalline Hydroxyapatite From Egg Shell And K2hpo4 Solution,” Materials Letters, Vol. 97, Pp. 148–150, 2013, Doi: 10.1016/J.Matlet.2013.01.082.

N. A. S. Mohd Pu’ad, J. Alipal, H. Z. Abdullah, M. I. Idris, And T. C. Lee, “Synthesis Of Eggshell Derived Hydroxyapatite Via Chemical Precipitation And Calcination Method,” In Materials Today: Proceedings, 2019, Vol. 42, Pp. 172–177. Doi: 10.1016/J.Matpr.2020.11.276.

M. Z. A. Khiri Et Al., “The Usability Of Ark Clam Shell (Anadara Granosa) As Calcium Precursor To Produce Hydroxyapatite Nanoparticle Via Wet Chemical Precipitate Method In Various Sintering Temperature,” Springerplus, Vol. 5, No. 1, Dec. 2016, Doi: 10.1186/S40064-016-2824-Y.

F. Y. Syafaat And Y. Yusuf, “Influence Of Ca/P Concentration On Hydroxyapatite (Hap) From Asian Moon Scallop Shell (Amusium Pleuronectes),” 2019.

M. Sari And Y. Yusuf, “Synthesis And Characterization Of Hydroxyapatite Based On Green Mussel Shells (Perna Viridis) With The Variation Of Stirring Time Using The Precipitation Method,” In Iop Conference Series: Materials Science And Engineering, Nov. 2018, Vol. 432, No. 1. Doi: 10.1088/1757-899x/432/1/012046.

D. S. Gomes, A. M. C. Santos, G. A. Neves, And R. R. Menezes, “A Brief Review On Hydroxyapatite Production And Use In Biomedicine,” Ceramica, Vol. 65, No. 374. Associacao Brasileira De Ceramica, Pp. 282–302, 2019. Doi: 10.1590/0366-69132019653742706.

M. L. Qi Et Al., “Hydroxyapatite Fibers: A Review Of Synthesis Methods,” Jom, Vol. 69, No. 8. Minerals, Metals And Materials Society, Pp. 1354–1360, Aug. 01, 2017. Doi: 10.1007/S11837-017-2427-2.

S. Hampshire, “Ceramic Processing And Sintering,” Materials & Design, Vol. 17, No. 1, Pp. 55–56, 1996, Doi: 10.1016/0261-3069(96)83771-X.

N. A. S. Mohd Pu’ad, R. H. Abdul Haq, H. Mohd Noh, H. Z. Abdullah, M. I. Idris, And T. C. Lee, “Synthesis Method Of Hydroxyapatite: A Review,” In Materials Today: Proceedings, 2019, Vol. 29, Pp. 233–239. Doi: 10.1016/J.Matpr.2020.05.536.

M. Sadat-Shojai, M. T. Khorasani, E. Dinpanah-Khoshdargi, And A. Jamshidi, “Synthesis Methods For Nanosized Hydroxyapatite With Diverse Structures,” Acta Biomaterialia, Vol. 9, No. 8. Elsevier Ltd, Pp. 7591–7621, 2013. Doi: 10.1016/J.Actbio.2013.04.012.

K. Lin, C. Wu, And J. Chang, “Advances In Synthesis Of Calcium Phosphate Crystals With Controlled Size And Shape,” Acta Biomaterialia, Vol. 10, No. 10. Elsevier Ltd, Pp. 4071–4102, Oct. 01, 2014. Doi: 10.1016/J.Actbio.2014.06.017.

S. Pramanik And K. K. Kar, “Nanohydroxyapatite Synthesized From Calcium Oxide And Its Characterization,” International Journal Of Advanced Manufacturing Technology, Vol. 66, No. 5–8, Pp. 1181–1189, May 2013, Doi: 10.1007/S00170-012-4401-Z.

M. H. Fathi And E. M. Zahrani, “Fabrication And Characterization Of Fluoridated Hydroxyapatite Nanopowders Via Mechanical Alloying,” Journal Of Alloys And Compounds, Vol. 475, No. 1–2, Pp. 408–414, May 2009, Doi: 10.1016/J.Jallcom.2008.07.058.

M. H. Fathi And E. Mohammadi Zahrani, “Mechanical Alloying Synthesis And Bioactivity Evaluation Of Nanocrystalline Fluoridated Hydroxyapatite,” Journal Of Crystal Growth, Vol. 311, No. 5, Pp. 1392–1403, Feb. 2009, Doi: 10.1016/J.Jcrysgro.2008.11.100.

C. Shu, W. Yanwei, L. Hong, P. Zhengzheng, And Y. Kangde, “Synthesis Of Carbonated Hydroxyapatite Nanofibers By Mechanochemical Methods,” Ceramics International, Vol. 31, No. 1, Pp. 135–138, 2005, Doi: 10.1016/J.Ceramint.2004.04.012.

S. Eiden-Aßmann, M. Viertelhaus, A. Heiß, K. A. Hoetzer, And J. Felsche, “T He Influence Of Amino Acids On The Biomineralization Of Hydroxyapatite In Gelatin,” 2002. [Online]. Available: Www.Elsevier.Com/Locate/Jinorgbio

J. Zhan, Y. H. Tseng, J. C. C. Chan, And C. Y. Mou, “Biomimetic Formation Of Hydroxyapatite Nanorods By A Single-Crystal-To- Single-Crystal Transformation,” Advanced Functional Materials, Vol. 15, No. 12, Pp. 2005–2010, Dec. 2005, Doi: 10.1002/Adfm.200500274.

M. H. Santos, M. De Oliveira, L. Palhares, F. Souza, H. S. Mansur, And L. Vasconcelos, “Synthesis Control And Characterization Of Hydroxyapatite Prepared By Wet Precipitation Process 625,” 2004.

J. H. Kim, S. H. Kim, H. K. Kim, T. Akaike, And S. C. Kim, “Synthesis And Characterization Of Hydroxyapatite Crystals: A Review Study On The Analytical Methods,” Journal Of Biomedical Materials Research, Vol. 62, No. 4, Pp. 600–612, 2002, Doi: 10.1002/Jbm.10280.

I. R. Oliveira, T. L. Andrade, K. C. M. L. Araujo, A. P. Luz, And V. C. Pandolfelli, “Hydroxyapatite Synthesis And The Benefits Of Its Blend With Calcium Aluminate Cement,” Ceramics International, Vol. 42, No. 2, Pp. 2542–2549, Feb. 2016, Doi: 10.1016/J.Ceramint.2015.10.056.

G. Bezzi, G. Celotti, E. Landi, T. M. G. La Torretta, I. Sopyan, And A. Tampieri, “A Novel Sol-Gel Technique For Hydroxyapatite Preparation,” Materials Chemistry And Physics, Vol. 78, No. 3, Pp. 816–824, Feb. 2003, Doi: 10.1016/S0254-0584(02)00392-9.

A. Yelten-Yilmaz And S. Yilmaz, “Wet Chemical Precipitation Synthesis Of Hydroxyapatite (Ha) Powders,” Ceramics International, Vol. 44, No. 8, Pp. 9703–9710, Jun. 2018, Doi: 10.1016/J.Ceramint.2018.02.201.

I. Mobasherpour, M. S. Heshajin, A. Kazemzadeh, And M. Zakeri, “Synthesis Of Nanocrystalline Hydroxyapatite By Using Precipitation Method,” Journal Of Alloys And Compounds, Vol. 430, No. 1–2, Pp. 330–333, Mar. 2007, Doi: 10.1016/J.Jallcom.2006.05.018.

C. Chircov, A. M. Grumezescu, And A. M. Holban, “Magnetic Particles For Advanced Molecular Diagnosis,” Materials, Vol. 12, No. 13. Mdpi Ag, Jul. 01, 2019. Doi: 10.3390/Ma12132158.

A. Fihri, C. Len, R. S. Varma, And A. Solhy, “Hydroxyapatite: A Review Of Syntheses, Structure And Applications In Heterogeneous Catalysis,” Coordination Chemistry Reviews, Vol. 347. Elsevier B.V., Pp. 48–76, Sep. 15, 2017. Doi: 10.1016/J.Ccr.2017.06.009.

T. Thanh Hoai And N. Kim Nga, “Synthesis And Investigation Into Apatite-Forming Ability Of Hydroxyapatite/Chitosan-Based Scaffold,” Vnu Journal Of Science: Natural Sciences And Technology, Vol. 35, No. 3, Sep. 2019, Doi: 10.25073/2588-1140/Vnunst.4896.

G. M. Hernández Ortiz, R. Parra, And M. A. Fanovich, “Comparative Hydrothermal Synthesis Of Hydroxyapatite By Using Cetyltrimethylammonium Bromide And Hexamethylenetetramine As Additives,” Ceramics International, Vol. 44, No. 4, Pp. 3658–3663, Mar. 2018, Doi: 10.1016/J.Ceramint.2017.11.120.

S. Utara And J. Klinkaewnarong, “Sonochemical Synthesis Of Nano-Hydroxyapatite Using Natural Rubber Latex As A Templating Agent,” Ceramics International, Vol. 41, No. 10, Pp. 14860–14867, Jun. 2015, Doi: 10.1016/J.Ceramint.2015.08.018.

X. Ma, Y. Chen, J. Qian, Y. Yuan, And C. Liu, “Controllable Synthesis Of Spherical Hydroxyapatite Nanoparticles Using Inverse Microemulsion Method,” Materials Chemistry And Physics, Vol. 183, Pp. 220–229, Nov. 2016, Doi: 10.1016/J.Matchemphys.2016.08.021.

M. B. Koirala, T. D. T. Nguyen, A. Pitchaimani, S. O. Choi, And S. Aryal, “Synthesis And Characterization Of Biomimetic Hydroxyapatite Nanoconstruct Using Chemical Gradient Across Lipid Bilayer,” Acs Applied Materials And Interfaces, Vol. 7, No. 49, Pp. 27382–27390, Dec. 2015, Doi: 10.1021/Acsami.5b09042.

S. Amin, T. Siddique, M. Mujahid, And S. S. Shah, “Synthesis And Characterization Of Nano Hydroxyapatite Using Reverse Micro Emulsions As Nano Reactors.,” Journal Of The Chemical Society Of Pakistan, Vol. 37, No. 1, Pp. 79–85, 2015.

N. A. S. Mohd Pu’ad, R. H. Abdul Haq, H. Mohd Noh, H. Z. Abdullah, M. I. Idris, And T. C. Lee, “Synthesis Method Of Hydroxyapatite: A Review,” In Materials Today: Proceedings, 2019, Vol. 29, Pp. 233–239. Doi: 10.1016/J.Matpr.2020.05.536.

A. Mechay, H. E. L. Feki, F. Schoenstein, And N. Jouini, “Nanocrystalline Hydroxyapatite Ceramics Prepared By Hydrolysis In Polyol Medium,” Chemical Physics Letters, Vol. 541, Pp. 75–80, Jul. 2012, Doi: 10.1016/J.Cplett.2012.05.047.

M. C. Wang, H. T. Chen, W. J. Shih, H. F. Chang, M. H. Hon, And I. M. Hung, “Crystalline Size, Microstructure And Biocompatibility Of Hydroxyapatite Nanopowders By Hydrolysis Of Calcium Hydrogen Phosphate Dehydrate (Dcpd),” Ceramics International, Vol. 41, No. 2, Pp. 2999–3008, Mar. 2015, Doi: 10.1016/J.Ceramint.2014.10.135.

K. Hwang, J. Song, B. Kang, And Y. Park, “Sol-Gel Derived Hydroxyapatite Films On Alumina Substrates,” 2000. [Online]. Available: Www.Elsevier.Nl/Locate/Surfcoat

V. M. M. Goldberg, Y. M. Khan, C. T. Mdp. Laurencin, And R. N. M. Rosier, “Bone-Graft Substitutes: Facts, Fictions, And Applications,” The Journal Of Bone & Joint Surgery, Vol. 83, No. 1, Pp. 98–103, 2001.

J. A. M. Rihn, C. M. Gates, S. D. M. Glassman, And F. M. M. Phillips, “The Use Of Bone Morphogenetic Protein In Lumbar Spine Surgery,” The Journal Of Bone & Joint Surgery, Vol. 90, No. 1, Pp. 2014–2025, 2008.

A. Shavandi, A. E. D. A. Bekhit, Z. Sun, And A. Ali, “A Review Of Synthesis Methods, Properties And Use Of Hydroxyapatite As A Substitute Of Bone,” Journal Of Biomimetics, Biomaterials And Biomedical Engineering, Vol. 25. Trans Tech Publications Ltd, Pp. 98–117, 2015. Doi: 10.4028/Www.Scientific.Net/Jbbbe.25.98.

B. Zhang, L. Gao, L. Ma, Y. Luo, H. Yang, And Z. Cui, “3d Bioprinting: A Novel Avenue For Manufacturing Tissues And Organs,” Engineering, Vol. 5, No. 4, Pp. 777–794, Aug. 2019, Doi: 10.1016/J.Eng.2019.03.009.

E. S. Bishop Et Al., “3-D Bioprinting Technologies In Tissue Engineering And Regenerative Medicine: Current And Future Trends,” Genes & Diseases, Vol. 4, No. 4, Pp. 185–195, Dec. 2017, Doi: 10.1016/J.Gendis.2017.10.002.

D. Sundaramurthi, S. Rauf, And C. Hauser, “3d Bioprinting Technology For Regenerative Medicine Applications,” International Journal Of Bioprinting, Vol. 2, No. 2, Jun. 2016, Doi: 10.18063/Ijb.2016.02.010.

G. D. Martin, S. D. Hoath, And I. M. Hutchings, “Inkjet Printing - The Physics Of Manipulating Liquid Jets And Drops,” Journal Of Physics: Conference Series, Vol. 105, P. 012001, Mar. 2008, Doi: 10.1088/1742-6596/105/1/012001.

B. Derby, “Inkjet Printing Of Functional And Structural Materials: Fluid Property Requirements, Feature Stability, And Resolution,” Annual Review Of Materials Research, Vol. 40, No. 1, Pp. 395–414, Jun. 2010, Doi: 10.1146/Annurev-Matsci-070909-104502.

W. Zhu, X. Ma, M. Gou, D. Mei, K. Zhang, And S. Chen, “3d Printing Of Functional Biomaterials For Tissue Engineering,” Current Opinion In Biotechnology, Vol. 40, Pp. 103–112, Aug. 2016, Doi: 10.1016/J.Copbio.2016.03.014.

Z. Zhou, F. Buchanan, C. Mitchell, And N. Dunne, “Printability Of Calcium Phosphate: Calcium Sulfate Powders For The Application Of Tissue Engineered Bone Scaffolds Using The 3d Printing Technique,” Materials Science And Engineering: C, Vol. 38, Pp. 1–10, May 2014, Doi: 10.1016/J.Msec.2014.01.027.

L. Strobel Et Al., “Induction Of Bone Formation In Biphasic Calcium Phosphate Scaffolds By Bone Morphogenetic Protein-2 And Primary Osteoblasts,” Journal Of Tissue Engineering And Regenerative Medicine, Vol. 8, No. 3, Pp. 176–185, Mar. 2014, Doi: 10.1002/Term.1511.

M. P. Nikolova And M. S. Chavali, “Recent Advances In Biomaterials For 3d Scaffolds: A Review,” Bioactive Materials, Vol. 4, Pp. 271–292, Dec. 2019, Doi: 10.1016/J.Bioactmat.2019.10.005.

C. Mandrycky, Z. Wang, K. Kim, And D.-H. Kim, “3d Bioprinting For Engineering Complex Tissues,” Biotechnology Advances, Vol. 34, No. 4, Pp. 422–434, Jul. 2016, Doi: 10.1016/J.Biotechadv.2015.12.011.

R. Gauvin Et Al., “Microfabrication Of Complex Porous Tissue Engineering Scaffolds Using 3d Projection Stereolithography,” Biomaterials, Vol. 33, No. 15, Pp. 3824–3834, May 2012, Doi: 10.1016/J.Biomaterials.2012.01.048.

J. J. A. Barry Et Al., “In Vitro Study Of Hydroxyapatite-Based Photocurable Polymer Composites Prepared By Laser Stereolithography And Supercritical Fluid Extraction,” Acta Biomaterialia, Vol. 4, No. 6, Pp. 1603–1610, Nov. 2008, Doi: 10.1016/J.Actbio.2008.05.024.

A. Woesz Et Al., “Towards Bone Replacement Materials From Calcium Phosphates Via Rapid Prototyping And Ceramic Gelcasting,” Materials Science And Engineering: C, Vol. 25, No. 2, Pp. 181–186, Apr. 2005, Doi: 10.1016/J.Msec.2005.01.014.

L. Le Guéhennec Et Al., “In Vitro And In Vivo Biocompatibility Of Calcium‐Phosphate Scaffolds Three‐Dimensional Printed By Stereolithography For Bone Regeneration,” Journal Of Biomedical Materials Research Part A, Vol. 108, No. 3, Pp. 412–425, Mar. 2020, Doi: 10.1002/Jbm.A.36823.

M. Milazzo Et Al., “Additive Manufacturing Approaches For Hydroxyapatite‐Reinforced Composites,” Advanced Functional Materials, Vol. 29, No. 35, P. 1903055, Aug. 2019, Doi: 10.1002/Adfm.201903055.

S. Derakhshanfar, R. Mbeleck, K. Xu, X. Zhang, W. Zhong, And M. Xing, “3d Bioprinting For Biomedical Devices And Tissue Engineering: A Review Of Recent Trends And Advances,” Bioactive Materials, Vol. 3, No. 2, Pp. 144–156, Jun. 2018, Doi: 10.1016/J.Bioactmat.2017.11.008.

I. T. Ozbolat And M. Hospodiuk, “Current Advances And Future Perspectives In Extrusion-Based Bioprinting,” Biomaterials, Vol. 76, Pp. 321–343, Jan. 2016, Doi: 10.1016/J.Biomaterials.2015.10.076.

M. Milazzo Et Al., “Additive Manufacturing Approaches For Hydroxyapatite‐Reinforced Composites,” Advanced Functional Materials, Vol. 29, No. 35, P. 1903055, Aug. 2019, Doi: 10.1002/Adfm.201903055.

M. P. Nikolova And M. S. Chavali, “Recent Advances In Biomaterials For 3d Scaffolds: A Review,” Bioactive Materials, Vol. 4, Pp. 271–292, Dec. 2019, Doi: 10.1016/J.Bioactmat.2019.10.005.

A. Khalyfa Et Al., “Development Of A New Calcium Phosphate Powder-Binder System For The 3d Printing Of Patient Specific Implants,” Journal Of Materials Science: Materials In Medicine, Vol. 18, No. 5, Pp. 909–916, May 2007, Doi: 10.1007/S10856-006-0073-2.

S. Michna, W. Wu, And J. A. Lewis, “Concentrated Hydroxyapatite Inks For Direct-Write Assembly Of 3-D Periodic Scaffolds,” Biomaterials, Vol. 26, No. 28, Pp. 5632–5639, Oct. 2005, Doi: 10.1016/J.Biomaterials.2005.02.040.

L. Sun, S. T. Parker, D. Syoji, X. Wang, J. A. Lewis, And D. L. Kaplan, “Direct-Write Assembly Of 3d Silk/Hydroxyapatite Scaffolds For Bone Co-Cultures,” Advanced Healthcare Materials, Vol. 1, No. 6, Pp. 729–735, Nov. 2012, Doi: 10.1002/Adhm.201200057.

M. Khodaei, K. Amini, And A. Valanezhad, “Fabrication And Characterization Of Poly Lactic Acid Scaffolds By Fused Deposition Modeling For Bone Tissue Engineering,” Journal Of Wuhan University Of Technology-Mater. Sci. Ed., Vol. 35, No. 1, Pp. 248–251, Feb. 2020, Doi: 10.1007/S11595-020-2250-4.

M. Van Den Eynde And P. Van Puyvelde, “3d Printing Of Poly(Lactic Acid),” 2017, Pp. 139–158. Doi: 10.1007/12_2017_28.

T. Takayama, K. Uchiumi, H. Ito, T. Kawai, And M. Todo, “Particle Size Distribution Effects On Physical Properties Of Injection Molded Ha/Pla Composites,” Advanced Composite Materials, Vol. 22, No. 5, Pp. 327–337, Oct. 2013, Doi: 10.1080/09243046.2013.820123.

X. Zheng, S. Zhou, X. Li, And J. Weng, “Shape Memory Properties Of Poly(D,L-Lactide)/Hydroxyapatite Composites,” Biomaterials, Vol. 27, No. 24, Pp. 4288–4295, Aug. 2006, Doi: 10.1016/J.Biomaterials.2006.03.043.

E. Nejati, H. Mirzadeh, And M. Zandi, “Synthesis And Characterization Of Nano-Hydroxyapatite Rods/Poly(L-Lactide Acid) Composite Scaffolds For Bone Tissue Engineering,” Composites Part A: Applied Science And Manufacturing, Vol. 39, No. 10, Pp. 1589–1596, Oct. 2008, Doi: 10.1016/J.Compositesa.2008.05.018.

J. W. Leenslag, A. J. Pennings, R. R. M. Bos, F. R. Rozema, And G. Boering, “Resorbable Materials Of Poly(L-Lactide). Vi. Plates And Screws For Internal Fracture Fixation,” Biomaterials, Vol. 8, No. 1, Pp. 70–73, Jan. 1987, Doi: 10.1016/0142-9612(87)90034-2.

J. Li, X.L.Lu, And Y. F. Zheng, “Effect Of Surface Modified Hydroxyapatite On The Tensile Property Improvement Of Ha/Pla Composite,” Applied Surface Science, Vol. 255, No. 2, Pp. 494–497, Nov. 2008, Doi: 10.1016/J.Apsusc.2008.06.067.

S. Kobayashi And K. Sakamoto, “Bending And Compressive Properties Of Crystallized Tcp/Plla Composites,” Advanced Composite Materials, Vol. 18, No. 3, Pp. 287–295, Jan. 2009, Doi: 10.1163/156855109x434694.

S. Yamaji And S. Kobayashi, “Effect Of In Vitro Hydrolysis On The Compressive Behavior And Strain Rates Dependence Of Tricalcium Phosphate/Poly(L-Lactic Acid) Composites,” Advanced Composite Materials, Vol. 22, No. 1, Pp. 1–11, Feb. 2013, Doi: 10.1080/09243046.2012.760437.

T. Takayama, M. Todo, And A. Takano, “The Effect Of Bimodal Distribution On The Mechanical Properties Of Hydroxyapatite Particle Filled Poly(L-Lactide) Composites,” Journal Of The Mechanical Behavior Of Biomedical Materials, Vol. 2, No. 1, Pp. 105–112, Jan. 2009, Doi: 10.1016/J.Jmbbm.2008.06.001.

S. Mondal Et Al., “Hydroxyapatite Nano Bioceramics Optimized 3d Printed Poly Lactic Acid Scaffold For Bone Tissue Engineering Application,” Ceramics International, Vol. 46, No. 3, Pp. 3443–3455, Feb. 2020, Doi: 10.1016/J.Ceramint.2019.10.057.

C. Esposito Corcione Et Al., “Highly Loaded Hydroxyapatite Microsphere/ Pla Porous Scaffolds Obtained By Fused Deposition Modelling,” Ceramics International, Vol. 45, No. 2, Pp. 2803–2810, Feb. 2019, Doi: 10.1016/J.Ceramint.2018.07.297.

O. M. Böstman, “Osteoarthritis Of The Ankle After Foreign-Body Reaction To Absorbable Pins And Screws,” The Journal Of Bone And Joint Surgery. British Volume, Vol. 80-B, No. 2, Pp. 333–338, Mar. 1998, Doi: 10.1302/0301-620x.80b2.0800333.

K. K. Moncal Et Al., “3d Printing Of Poly(Ε-Caprolactone)/Poly(D,L-Lactide- Co -Glycolide)/Hydroxyapatite Composite Constructs For Bone Tissue Engineering,” Journal Of Materials Research, Vol. 33, No. 14, Pp. 1972–1986, Jul. 2018, Doi: 10.1557/Jmr.2018.111.

Y. Hu Et Al., “Facile Preparation Of Bioactive Nanoparticle/Poly(Ε-Caprolactone) Hierarchical Porous Scaffolds Via 3d Printing Of High Internal Phase Pickering Emulsions,” Journal Of Colloid And Interface Science, Vol. 545, Pp. 104–115, Jun. 2019, Doi: 10.1016/J.Jcis.2019.03.024.

S. Xu Et Al., “Selective Laser Sintering Fabrication Of Nano-Hydroxyapatite/Poly-&Amp;Epsilon;-Caprolactone Scaffolds For Bone Tissue Engineering Applications,” International Journal Of Nanomedicine, P. 4197, Nov. 2013, Doi: 10.2147/Ijn.S50685.

S. J. Peter, S. T. Miller, G. Zhu, A. W. Yasko, And A. G. Mikos, “In Vivo Degradation Of A Poly(Propylene Fumarate)/?-Tricalcium Phosphate Injectable Composite Scaffold,” Journal Of Biomedical Materials Research, Vol. 41, No. 1, Pp. 1–7, Jul. 1998, Doi: 10.1002/(Sici)1097-4636(199807)41:1<1::Aid-Jbm1>3.0.Co;2-N.

S. Petersmann, M. Spoerk, P. Huber, M. Lang, G. Pinter, And F. Arbeiter, “Impact Optimization Of 3d‐Printed Poly(Methyl Methacrylate) For Cranial Implants,” Macromolecular Materials And Engineering, Vol. 304, No. 11, P. 1900263, Nov. 2019, Doi: 10.1002/Mame.201900263.

A. E. Tontowi, D. Kuswanto, R. I. Sihaloho, And H. Sosiati, “Composite Of [Ha/Pmma] For 3d-Printer Material Application,” 2016, P. 150020. Doi: 10.1063/1.4958593.

B. Lal, M. Ghosh, B. Agarwal, D. Gupta, And A. Roychoudhury, “A Novel Economically Viable Solution For 3d Printing-Assisted Cranioplast Fabrication,” British Journal Of Neurosurgery, Vol. 34, No. 3, Pp. 280–283, May 2020, Doi: 10.1080/02688697.2020.1726289.

L. Valot, J. Martinez, A. Mehdi, And G. Subra, “Chemical Insights Into Bioinks For 3d Printing,” Chemical Society Reviews, Vol. 48, No. 15, Pp. 4049–4086, 2019, Doi: 10.1039/C7cs00718c.

L. Nie, G. Zhang, R. Hou, H. Xu, Y. Li, And J. Fu, “Controllable Promotion Of Chondrocyte Adhesion And Growth On Pva Hydrogels By Controlled Release Of Tgf-Β1 From Porous Plga Microspheres,” Colloids And Surfaces B: Biointerfaces, Vol. 125, Pp. 51–57, Jan. 2015, Doi: 10.1016/J.Colsurfb.2014.11.010.

G. Du Et Al., “Tough And Biocompatible Hydrogels Based On In Situ Interpenetrating Networks Of Dithiol-Connected Graphene Oxide And Poly(Vinyl Alcohol),” Acs Applied Materials & Interfaces, Vol. 7, No. 5, Pp. 3003–3008, Feb. 2015, Doi: 10.1021/Acsami.5b00184.

R. Hou, L. Nie, G. Du, X. Xiong, And J. Fu, “Natural Polysaccharides Promote Chondrocyte Adhesion And Proliferation On Magnetic Nanoparticle/Pva Composite Hydrogels,” Colloids And Surfaces B: Biointerfaces, Vol. 132, Pp. 146–154, Aug. 2015, Doi: 10.1016/J.Colsurfb.2015.05.008.

R. Velu, T. Calais, A. Jayakumar, And F. Raspall, “A Comprehensive Review On Bio-Nanomaterials For Medical Implants And Feasibility Studies On Fabrication Of Such Implants By Additive Manufacturing Technique,” Materials, Vol. 13, No. 1, P. 92, Dec. 2019, Doi: 10.3390/Ma13010092.

L. Nie, Y. Deng, P. Li, R. Hou, A. Shavandi, And S. Yang, “Hydroxyethyl Chitosan-Reinforced Polyvinyl Alcohol/Biphasic Calcium Phosphate Hydrogels For Bone Regeneration,” Acs Omega, Vol. 5, No. 19, Pp. 10948–10957, May 2020, Doi: 10.1021/Acsomega.0c00727.

L. Nie Et Al., “In Vitro Biomineralization On Poly(Vinyl Alcohol)/Biphasic Calcium Phosphate Hydrogels,” Bioinspired, Biomimetic And Nanobiomaterials, Vol. 9, No. 2, Pp. 122–128, Jun. 2020, Doi: 10.1680/Jbibn.19.00051.

W. Chai Et Al., “The Printability Of Three Water Based Polymeric Binders And Their Effects On The Properties Of 3d Printed Hydroxyapatite Bone Scaffold,” Ceramics International, Vol. 46, No. 5, Pp. 6663–6671, Apr. 2020, Doi: 10.1016/J.Ceramint.2019.11.154.

W. Chai Et Al., “The Printability Of Three Water Based Polymeric Binders And Their Effects On The Properties Of 3d Printed Hydroxyapatite Bone Scaffold,” Ceramics International, Vol. 46, No. 5, Pp. 6663–6671, Apr. 2020, Doi: 10.1016/J.Ceramint.2019.11.154.

N. M. Ergul Et Al., “3d Printing Of Chitosan/ Poly(Vinyl Alcohol) Hydrogel Containing Synthesized Hydroxyapatite Scaffolds For Hard-Tissue Engineering,” Polymer Testing, Vol. 79, P. 106006, Oct. 2019, Doi: 10.1016/J.Polymertesting.2019.106006.

J. M. Bouler, P. Pilet, O. Gauthier, And E. Verron, “Biphasic Calcium Phosphate Ceramics For Bone Reconstruction: A Review Of Biological Response,” Acta Biomaterialia, Vol. 53, Pp. 1–12, Apr. 2017, Doi: 10.1016/J.Actbio.2017.01.076.

F. Liu Et Al., “Osteogenesis Of 3d Printed Macro-Pore Size Biphasic Calcium Phosphate Scaffold In Rabbit Calvaria,” Journal Of Biomaterials Applications, Vol. 33, No. 9, Pp. 1168–1177, Apr. 2019, Doi: 10.1177/0885328218825177.

W. Huang, X. Zhang, Q. Wu, And B. Wu, “Fabrication Of Ha/ Β ‐Tcp Scaffolds Based On Micro‐Syringe Extrusion System,” Rapid Prototyping Journal, Vol. 19, No. 5, Pp. 319–326, Jul. 2013, Doi: 10.1108/Rpj-01-2012-0004.

Y. Wang Et Al., “3d Fabrication And Characterization Of Phosphoric Acid Scaffold With A Ha/Β-Tcp Weight Ratio Of 60:40 For Bone Tissue Engineering Applications,” Plos One, Vol. 12, No. 4, P. E0174870, Apr. 2017, Doi: 10.1371/Journal.Pone.0174870.

F. Zhao Et Al., “Mechanically Strong And Bioactive Carbon Fiber-Sic Nanowire-Hydroxyapatite-Pyrolytic Carbon Composites For Bone Implant Application,” Ceramics International, Vol. 47, No. 3, Pp. 3389–3400, Feb. 2021, Doi: 10.1016/J.Ceramint.2020.09.184.

V. A. Demina Et Al., “Biodegradable Poly(L-Lactide)/Calcium Phosphate Composites With Improved Properties For Orthopedics: Effect Of Filler And Polymer Crystallinity,” Materials Science And Engineering: C, Vol. 112, P. 110813, Jul. 2020, Doi: 10.1016/J.Msec.2020.110813.

T. Bian, K. Zhao, Q. Meng, Y. Tang, H. Jiao, And J. Luo, “The Construction And Performance Of Multi-Level Hierarchical Hydroxyapatite (Ha)/Collagen Composite Implant Based On Biomimetic Bone Haversian Motif,” Materials & Design, Vol. 162, Pp. 60–69, Jan. 2019, Doi: 10.1016/J.Matdes.2018.11.040.

Z. Wang, Y. Wang, Y. Ito, P. Zhang, And X. Chen, “A Comparative Study On The In Vivo Degradation Of Poly(L-Lactide) Based Composite Implants For Bone Fracture Fixation,” Scientific Reports, Vol. 6, No. 1, P. 20770, Feb. 2016, Doi: 10.1038/Srep20770.

Z.-J. Chen Et Al., “A New Cancellous Bone Material Of Silk Fibroin/Cellulose Dual Network Composite Aerogel Reinforced By Nano-Hydroxyapatite Filler,” International Journal Of Biological Macromolecules, Vol. 182, Pp. 286–297, Jul. 2021, Doi: 10.1016/J.Ijbiomac.2021.03.204.

K. E. Tanner, “Bioactive Ceramic-Reinforced Composites For Bone Augmentation,” Journal Of The Royal Society Interface, Vol. 7, No. Suppl_5, Oct. 2010, Doi: 10.1098/Rsif.2010.0229.Focus.

E. Mystiridou, A. C. Patsidis, And N. Bouropoulos, “Development And Characterization Of 3d Printed Multifunctional Bioscaffolds Based On Pla/Pcl/Hap/Batio3 Composites,” Applied Sciences, Vol. 11, No. 9, P. 4253, May 2021, Doi: 10.3390/App11094253.

E. Kolanthai, K. Ganesan, M. Epple, And S. N. Kalkura, “Synthesis Of Nanosized Hydroxyapatite/Agarose Powders For Bone Filler And Drug Delivery Application,” Materials Today Communications, Vol. 8, Pp. 31–40, Sep. 2016, Doi: 10.1016/J.Mtcomm.2016.03.008.

H.-S. Ko, S. Lee, D. Lee, And J. Y. Jho, “Mechanical Properties And Bioactivity Of Poly(Lactic Acid) Composites Containing Poly(Glycolic Acid) Fiber And Hydroxyapatite Particles,” Nanomaterials, Vol. 11, No. 1, P. 249, Jan. 2021, Doi: 10.3390/Nano11010249.




DOI: http://dx.doi.org/10.12962/j23378557.v8i1.a12830

Refbacks

  • There are currently no refbacks.


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License. IPTEK The Journal of Engineering published by Pusat Publikasi Ilmiah, Institut Teknologi Sepuluh Nopember

 

Please contact us for order or further information at: email: iptek.joe[at]gmail.com Fax/Telp: 031 5992945. Editorial Office Address: Pusat Riset Building 6th floor, ITS Campus, Sukolilo, Surabaya 60111, Indonesia.