Numerical Procedure for Modeling Crack Closure Induced Plasticity

Julendra Bambang Ariatedja, Wajan Berata

Abstract


Numerical procedures are utilized to predict crack closure-induced plasticity on planar surfaces. Skinner's algorithm is presented as an APDL macro command set. Procedures for controlling element size are developed to ensure the continuity of element size gradation. A loading generator is constructed using the *dim parameter, and the Newman model is explored for comparison. The analysis, based on conducted research, yields results lower than 0.05Sy.


Keywords


APDL, Crack closure induced plasticity, Element size gradation control, Finite element method

Full Text:

PDF

References


F. Antunes, L. Borrego, J. Costa, and J. Ferreira, “A numerical study of fatigue crack closure induced by plasticity,” Fatigue Fract. Eng. Mater. Struct., vol. 27, pp. 825–835, 2004, doi: 10.1111/j.1460-2695.2004.00738.x.

X. B. Lin and R. A. Smith, “Finite element modelling of fatigue crack growth of surface cracked plates Part III: Stress intensity factor and fatigue crack growth life,” Eng. Fract. Mech., vol. 63, no. 5, pp. 541–556, 1999, doi: 10.1016/S0013-7944(99)00041-7.

M. Yetmez, “Finite Element Analysis,” in Musculoskeletal Research and Basic Science, Cham: Springer International Publishing, pp. 51–59, 2016.

S. H. Lo, “Generation of high-quality gradation finite element mesh,” Eng. Fract. Mech., vol. 41, no. 2, pp. 191–202, Jan. 1992, doi: 10.1016/0013-7944(92)90180-M.

Y. Zhang, T. J. R. Hughes, and C. L. Bajaj, “An Automatic 3D Mesh Generation Method for Domains with Multiple Materials.,” Comput. Methods Appl. Mech. Eng., vol. 199, no. 5–8, pp. 405–415, Jan. 2010, doi: 10.1016/j.cma.2009.06.007.

J. C. Cavendish, “Automatic triangulation of arbitrary planar domains for the finite element method,” Int. J. Numer. Methods Eng., vol. 8, no. 4, pp. 679–696, Jan. 1974, doi: 10.1002/nme.1620080402.

K. Solanki, S. R. Daniewicz, and J. C. Newman Jr, “A new methodology for computing crack opening values from finite element analyses,” Eng. Fract. Mech., vol. 71, no. 7–8, pp. 149–171, May 2004, doi: 10.1016/S0013-7944(03)00113-9.

J. D. Skinner, Jr. A and J. S. Jr, “Finite Element Predictions Of Plasticity–Induced Fatigue Crack Closure In Three-Dimensional Cracked Geometries,” Mississippi State University, 2001.

W. Berata and A. Syaifudin, “Simulasi Perambatan Retak Pada Compact Tension Specimen 2D Dengan Metode Elemen Hingga Menggunakan Matlab 6.5,” 2004.

T. L. Anderson, "Fracture Mechanics Fundamentals and Applications Third Edition," Taylor & Francis, pp. 173-254, 2005.

J. Toribio, J. C. Matos, and B. González, “Numerical modeling of plasticity-induced fatigue crack growth retardation due to deflection in the near-tip area,” Metals (Basel)., vol. 11, no. 4, p. 541, Mar. 2021, doi: 10.3390/met11040541.

OpenAI, “ChatGPT,” 2023.

T. D. Canonsburg, “ANSYS Parametric Design Language Guide,” vol. 15317, April. pp. 724–746, 2009.




DOI: http://dx.doi.org/10.12962/j23378557.v9i3.a19560

Refbacks

  • There are currently no refbacks.


Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License. IPTEK The Journal of Engineering published by Pusat Publikasi Ilmiah, Institut Teknologi Sepuluh Nopember

 

Please contact us for order or further information at: email: iptek.joe[at]gmail.com Fax/Telp: 031 5992945. Editorial Office Address: Pusat Riset Building 6th floor, ITS Campus, Sukolilo, Surabaya 60111, Indonesia.