Integrated Process Design and Economic Evaluation of Waste-to-Biomaterial Conversion: Hydroxyapatite Production from Blue Crab Shells using Aspen Plus

Aldi Nugroho Nugroho, Tobing Gumelar, Silma Elvaretta Aska, Vita Fatichah Rizqiyah, Villia Lidzati Kamilah, Maharani Sugito Rosanti, Dimas Gilang Venanto, Ummu Zahroh Ma'mun, Haykal Nur Fajri Ramadhan, Eva Oktavia Ningrum

Abstract


The demand for bone transplant materials is rising in Indonesia. A biogenic calcium supply for hydroxyapatite (HAp), the primary inorganic component of human bone, is provided by blue crab shells, which are produced contain 53.70–78 weight percent CaCO₃. A steady-state method for producing HAp from crab shells is developed and assessed in this study, utilizing Aspen Plus V14 in conjunction with the Aspen Process Economic Analyzer. The simulated flowsheet comprises solid–liquid separation, drying/sintering, CaO storage, CaO hydration, HAp precipitation with H₃PO₄. The global thermodynamic model chosen is the SOLIDS property approach, and stoichiometric reactions with Arrhenius-type power-law kinetics are used to simulate HAp production. In the simulation, 150.246 kg·h⁻¹ HAp, or roughly 1451.81 t·year⁻¹, is predicted for a design base of 46.48 kg·h⁻¹ CaO. A 20-year equipment lifetime, 8000 operating hours annually, a 20% rate of return, and zero-cost shells are assumed in the economic study. This results in a total capital cost of USD 1.94 million and an annual operating cost of USD 1.31 million. The findings offer a quantifiable starting point for evaluating the technical viability of waste-to-HAp systems and directing additional experimental validation, life-cycle analysis, and process improvement.


Keywords


Aspen plus simulation; Calcium carbonate; Crab shell waste; Hydroxyapatite; Techno-economic assessment

Full Text:

PDF

References


M. U. Al-Faruqi, “Pemanfaatan Limbah Cangkang Rajungan (Portunus pelagicus ) sebagai Produk Pangan di Kabupaten Cirebon,” J. Pus. Inov. Masy., vol. 2, no. 1, pp. 12–17, 2020.

N. D. Malau, S. F. Azzahra, and T. Guswantoro, “Hydroxyapatite Preparation from Crab Shell Waste by Precipitation Method,” Solid State Technol., vol. 64, no. 3, pp. 1–10, 2021.

N. Luthfiyana, Nusaibah, Sumartini, and Asniar, “Characteristics of Keraca (Thalamita sp.) Crab Shell Flour as Functional Food Ingredients,” IOP Conf. Ser. Earth Environ. Sci., vol. 1083, no. 1, 2022, doi: 10.1088/1755-1315/1083/1/012018.

E. O. Ningrum, E. L. Pratiwi, I. L. Shaffitri, A. F. P. Putra, A. D. Karisma, and S. Suprapto, “Production of bone implant filaments from blue crab shells (Portunus pelagicus) in various synthesis conditions and blending ratios of hydroxyapatite (HAp)-polycaprolactone (PCL),” IOP Conf. Ser. Earth Environ. Sci., vol. 963, no. 1, pp. 0–8, 2022, doi: 10.1088/1755-1315/963/1/012021.

I. Raya, E. Mayasari, A. Yahya, M. Syahrul, and A. I. Latunra, “Synthesis and Characterizations of Calcium Hydroxyapatite Derived from Crabs Shells (Portunus pelagicus) and Its Potency in Safeguard against to Dental Demineralizations,” Int. J. Biomater., vol. 2015, 2015, doi: 10.1155/2015/469176.

E. O. Ningrum, L. Ardiani, N. A. Rohmah, D. Niniek, and F. Puspita, “Modifikasi Biokomposit Kitosan dari Cangkang Rajungan (Portunus Pelagicus) dan Pektin untuk Aplikasi Edible Film,” Jur. Tek. Kim., no. April, pp. 4–9, 2019.

W. Yue, W. Song, C. Fan, and S. Li, “Kinetics of CaCO3 decomposition at low CO2 partial pressure in a vacuum fixed bed,” Chem. Eng. Sci., vol. 273, p. 118646, 2023, doi: 10.1016/j.ces.2023.118646.

E. O. Ningrum et al., “Innovative valorization of crab shells for hydroxyapatite-based composite hydrogels in bone engineering applications,” J. Chem. Technol. Biotechnol., no. May, 2025, doi: 10.1002/jctb.70005.

Sarita, D. Pal Manisha, B. Singh, A. K. Rai, R. P. Tewari, and P. K. Dutta, “An injectable blend hydrogel for bone tissue engineering application: synthesis and characterization,” J. Macromol. Sci. Part A Pure Appl. Chem., vol. 61, no. 1, pp. 2–10, 2024, doi: 10.1080/10601325.2023.2277211.

Z. Boukha, M. Pilar, M. Ángel, and J. R. González-velasco, “Applied Catalysis A , General Influence of Ca / P ratio on the catalytic performance of Ni / hydroxyapatite samples in dry reforming of methane,” Appl. Catal. A, Gen., vol. 580, no. April, pp. 34–45, 2019, doi: 10.1016/j.apcata.2019.04.034.

Y. Pang, L. Guan, Y. Zhu, R. Niu, and S. Zhu, “Gallic acid-grafted chitosan antibacterial hydrogel incorporated with polydopamine-modi fi ed hydroxyapatite for enhancing bone healing,” Front. Bioeng. Biotechnol., no. June, pp. 1–15, 2023, doi: 10.3389/fbioe.2023.1162202.

S. Soleymani and S. M. Naghib, “Heliyon 3D and 4D printing hydroxyapatite-based scaffolds for bone tissue engineering and regeneration,” Heliyon, vol. 9, no. 9, p. e19363, 2023, doi: 10.1016/j.heliyon.2023.e19363.

A. Nasar, Hydroxyapatite and its coatings in dental implants, no. ii. Elsevier Inc., 2019.

R. Bagoun, M. E. L. Khouakhi, O. Lhoussaine, and M. E. L. Asri, “Critical Fouling Resistance in Heat Exchanger Energy Efficiency in Phosphoric Acid Concentration : An Industrial Plant Aspen Plus Simulation-Based Approach Condensate Mass fraction,” vol. 13, no. 4, pp. 1657–1672, 2025.

T. Narushima and T. Nakano, “Effect of Precursor Deficiency Induced Ca / P Ratio on Antibacterial and Osteoblast Adhesion Properties of Ag-Incorporated Hydroxyapatite: Reducing Ag Toxicity,” Materials (Basel)., vol. 14, no. 3158, pp. 1–18, 2021.

P. Abdel El Moneim and P. Ismail, “Using Aspen Hysys Software for the Simulation of Ammonia Production Plant,” Int. J. Nov. Res. Dev., vol. 3, no. November, p. 1, 2018, [Online]. Available: www.ijnrd.org.

N. Eliaz and N. Metoki, “Calcium Phosphate Bioceramics : A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications,” Materials (Basel)., vol. 10, no. 334, pp. 1–104, 2017, doi: 10.3390/ma10040334.

S. Handa, D. Nath, A. Pal, and M. K. Sah, “Biomimetic hydroxyapatite and strontium-doped derivatives from crab shells and their ingenious scaffold fabrication for bone tissue engineering,” Mater. Today Commun., vol. 38, no. January, p. 108072, 2024, doi: 10.1016/j.mtcomm.2024.108072.

P. Ylinen, Applications of Coralline Hydroxyapatite With Bioabsorbable Containment and Reinforcement As Bone Graft Substitute, no. January 2006. 2006.

I. Sopyan, “Preparation Of Hydroxyapatite Powders For Medical Applications Via Sol-Gel Technique Preparation of the Stoichiometric Hydroxyapatite Powder,” vol. 4, no. 2, pp. 46–51, 2003.

S. E. Cahyaningrum, N. Herdyastuty, F. Wiana, B. Devina, and D. Supangat, “from Crab Shell ( Scylla serrata ) Waste With Different Methods Added Phosphate,” vol. 171, no. Snk, pp. 67–69, 2018.

R. C. Muhamadin et al., “Characterization and Synthesis Hydroxyapatite from Scallop Mussel Shells Prepared by the Microwave-Assisted Precipitation Methods,” vol. 21, no. 1, pp. 175–182, 2023.

S. E. Cahyaningrum, N. Herdyastuty, F. Wiana, B. Devina, and D. Supangat, “Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method,” Int. Conf. Chem. Mater. Sci., vol. 299, no. 012039, pp. 1–5, 2018, doi: 10.1088/1757-899X/299/1/012039.

M. Faraji and M. Saidi, “Hydrogen-rich syngas production via integrated configuration of pyrolysis and air gasification processes of various algal biomass : Process simulation and evaluation using Aspen Plus software,” Int. J. Hydrog., vol. 6, no. 46, pp. 18844–18856, 2021.

A. Douglas and A. L. I. Elkamel, “Using Aspen Plus To Simulate Pharmaceutical Processes – An Aspirin Case Study ¼ T,” vol. 15, no. 9, 2022.

C. K. Jayarathna, A. Mathisen, L. Erik, and L. Tokheim, “Aspen Plus ® Process Simulation of Calcium Looping with Different Indirect Calciner Heat Transfer Concepts,” Energy Procedia, vol. 114, no. 1876, pp. 201–210, 2017, doi: 10.1016/j.egypro.2017.03.1162.

A. Esmaeili, Z. Liu, Y. Xiang, J. Yun, and L. Shao, “Modeling and validation of carbon dioxide absorption in aqueous solution of piperazine + methyldiethanolamine by PC-SAFT and E-NRTL models in a packed bed pilot plant : Study of kinetics and thermodynamics,” Process Saf. Environ. Prot., vol. 141, pp. 95–109, 2020, doi: 10.1016/j.psep.2020.05.010.

O. Rakhmetova, R. J. Brown, and T. J. Rainey, “Effect of thermodynamic models on process modelling and techno-economics for biofuel. A case study using fractional distillation of an algae biocrude,” J. Clean. Prod., vol. 463, no. May, p. 142741, 2024, doi: 10.1016/j.jclepro.2024.142741.

A. Sarrion, E. Medina-martos, D. Iribarren, E. Diaz, A. F. Mohedano, and J. Dufour, “Science of the Total Environment Life cycle assessment of a novel strategy based on hydrothermal carbonization for nutrient and energy recovery from food waste,” Sci. Total Environ., vol. 878, no. March, p. 163104, 2023, doi: 10.1016/j.scitotenv.2023.163104.

R. Tokpayev et al., “Phosphogypsum conversion under conditions of SC-CO 2,” J. CO2 Util., vol. 63, no. July, p. 102120, 2022, doi: 10.1016/j.jcou.2022.102120.




DOI: http://dx.doi.org/10.12962%2Fj23378557.v11i3.a23060

Refbacks

  • There are currently no refbacks.


Yukbola

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License. IPTEK The Journal of Engineering published by Pusat Publikasi Ilmiah, Institut Teknologi Sepuluh Nopember

 

Please contact us for order or further information at: email: iptek.joe[at]gmail.com Fax/Telp: 031 5992945. Editorial Office Address: Pusat Riset Building 6th floor, ITS Campus, Sukolilo, Surabaya 60111, Indonesia.

koi800

Mawar500